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1 Introduction
Software bugs are not going away. Millions of dollars and thousands of developer-hours are
spent finding bugs, debugging the root cause, writing a patch, and reviewing fixes [16, 60].
Automated tools such as linters, gradual type checkers, and static analyzers help drive down
costs by catching bugs early and increase developer efficiency [12, 13, 19]. However, truly fixing
bugs remains a predominantly manual and expensive process. Reliance on manual processes
further result in fixable bugs (found by automated tools) remaining unfixed. Automatic
Program Repair (APR) [44] promises to cut the costs of fixing bugs manually.

Automatic program repair is hard: the prospect of automatically changing a program’s
semantics can lead to intractable and undesirable behavior [50, 73]. To become mainstream,
APR must produce semantically correct patches that can be trusted for automatic application
to improve software.

The vast majority of APR research rely on existing tests to identify bugs, validate fixes,
or both [9, 38, 39, 43, 49, 50, 54, 55, 58, 63, 64, 75, 80]. Tests are appealing because they
are readily available in practice, and straightforwardly indicate whether a change improves
the program in question (i.e., by turning a previously failing test case into a passing one).
However, reliance on tests impose several fundamental limitations to approaches that currently
dominate the state of the art in APR. First, tests are inherently limited to executing single
paths and may consequently miss bugs. Figure 1a illustrates the issue in a real and widely-
used open source static analysis tool error-prone. The call to resolveMethod on line 3 can
return NULL, leading to a possible null pointer exception on line 6. A developer committed
a fix (with a test) that inserts a call to a custom error handler (checkGuardedBy, line 5).
However, the very same mistake was made on lines 10–12 in the same switch statement, but
remained unfixed for 18 months. Tests usually cannot identify recurring mistakes like this,
and incur additional manual overhead (writing additional tests) when fixing semantically
similar bugs. Second, developers avoid writing tests for certain classes of common bugs (e.g.,
resource leaks, Figure 1b), because triggering a resource leak could require resource-intensive
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actions, like bombarding a server with connections.1 Finally, tests are inherently limited to
testing known functionality of programs, and thus cannot be used to fix newly discovered
bugs automatically. In contrast, the bugs in Figure 1 can be discovered by a static analysis.
To truly propel real-world adoption, APR must expand to bugs discovered by automated
tools.

1 case IDENTIFIER: {
2 MethodSymbol mtd =
3 r.resolveMtd(node , id.get());
4 // mtd may be null
5 + checkGuardedBy(mtd!=null , id);
6 return bindSelect(computeBase(

context , mtd), mtd);
7 }
8 case MEMBER_SELECT: {
9 MethodSymbol mtd =

10 r.resolveMtd(node , id.get());
11 // same problem!
12 return bindSelect(computeBase(

context , mtd), mtd);
13 }

(a) Developers fixed the potential null pointer
exception on line 6; 18 months later, they ad-
dressed the very similar bug on lines 10–12.

1 fp = fopen(rdbfilename ,"r");
2 ...
3 if (memcmp(buf ,"REDIS" ,5) != 0)

{
4 rdbCheckError("...");
5 // fp leaked!
6 return 1;
7 }
8 if (rdbver < 1 || rdbver >

RDB_VERSION) {
9 rdbCheckError("...");

10 // fp leaked!
11 return 1;
12 }
13 ...

(b) Example resource leaks detected by a static
analyzer. Resource leaks are typically not cov-
ered by tests.

Figure 1

Static analysis and verification present opportunity to overcome key limitations above:
they can reason over multiple paths without tests, apply to bugs that are difficult to test
for, and discover bugs missed by developers and tests. Bugs targeted by existing analyzers
therefore motivate the application of APR beyond test-driven validation. The challenge
in applying static analysis for repair lies in defining suitable correctness conditions for
changing a program, and enabling efficient discovery and validation of candidate changes.
This complexity leads to work that may focus on just one bug class at a time [25, 32]. More
generally, existing APR research based on analysis tooling demonstrate limited practical
applicability to real-world software [35, 40, 78] or lack full automation [47, 48]. Existing works
all fail to demonstrate the ability to fix previously undiscovered bugs. Some bug-finding tools
provide simple syntax-driven “quick fix” suggestions [4, 36], but do not reason semantically
about suggested fixes or their correctness.
Proposal Overview: Semantic-driven Fixes. Recent progress has delivered high quality
analysis techniques and tools to cost effectively find real bugs, like the examples in Figure 1.
A concrete example is Infer [19], which uses Separation Logic to reason about heap properties
like null dereferences and memory leaks. My insight is that the underlying semantic reasoning
behind tools, like Infer, enable new APR techniques for fixing common bugs (including
unknown ones): they allow (a) efficient semantic-driven search and application of program

1https://github.com/cockroachdb/cockroach/pull/22448
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transformation and (b) provide high confidence in patch correctness by validating changes
with respect to the semantic analysis domain.

As a concrete example, the bugs in Figure 1 are found by a static analysis (namely,
Infer) by symbolically executing along paths and summarizing effects on the heap using
Separation Logic [14, 15] to detect violations (e.g., null dereferences and leaks). Finding
a fix requires finding program transformations that avoid such violations, for example “if
the file is open in the precondition of a program, it should be closed in the postcondition.”
Such repair specifications can be encoded as general fix effects (once per bug class) that
describe a desirable state transition in Separation Logic (i.e., as pre- and postconditions).
A compositional shape analysis [20] underpinning Infer exposes heap effects of individual
program terms so that such fixing effects can be discovered efficiently.

The general method defines correctness in terms of the underlying semantic property
of a bug class (i.e., as fix effects), with respect to an analysis domain (e.g., tracking heap
state encoded in Separation Logic); an applied fix is validated by the analysis logic. In this
setting, I propose to develop fully automatic, semantic-driven APR processes using recent
advances in logic-based analysis reasoning and tooling used for bug finding. The proposed
work entails developing new strategies for semantic-driven search and application of program
transformations. My work advances the state of the art by enabling efficient end-to-end bug
fixing (i.e., starting with bug discovery through to patch validation) that can fix previously
undiscovered bugs. I will focus on a fixed set of common bug classes and identify suitable
corresponding analysis domains to demonstrate efficient repair of such bugs in large, real
world programs.
Proposal Overview: Improving Analysis with Program Transformation. My in-
sight is that constrained program transformation, (using, e.g., the semantic-driven approach
above), can increase effectiveness of analyses. Runtime recovery [51] and error nullifica-
tion [45, 57] demonstrate benefits of modifying programs and state to avoid program crashes
and exploitation. Initial results applying semantic-driven program transformation for APR
reveals static and dynamic analyses themselves can be improved. Current program trans-
formation techniques, and those afforded by APR research, simply do not explore this
potential.

As a concrete example, the two resource leaks in Figure 1b cannot, in fact, both be found
by Infer. My work fixing resource leaks reveal that the second leak (Line 10) is only detected
once the first leak is fixed (Line 5). Without the fix, Infer short circuits the analysis after
the first leak is detected. This early result is the first, to the best of knowledge, showing
that program transformation can improve static analysis. Note that test-driven approaches
generally fail to recognize this potential, since an external analysis isn’t used.

More generally, I observe that programs and analyses may conservatively abort when
an error is detected. If analysis continues after detecting an error, the result can be invalid
or unsound because the program semantics may be affected by the error in unpredictable
ways. However, a conservative change to the program can allow the analysis to make safe
assumptions, allowing it to proceed further and still return valid results. I propose to
pursue this new direction by applying my program transformation techniques to empirically
demonstrate the largely unexplored potential and effectiveness of improving existing analyses.

The rest of the proposal is structured as follows: Section 2 introduces the thesis statement
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and the thesis hypotheses that motivate the proposed research, and the expected contributions.
Sections 3 and 4 explain the two proposed research thrusts in detail. Section 5 describes the
expected timeline to complete the research and Section 6 concludes.

2 Thesis Statement

The thesis is that semantic-driven search and application of program transformations, using
logic-based validation enable efficient, scalable, and unassisted automated program repair of
real-world programs and can improve the effectiveness of existing program analyses.

The thesis is supported by two hypotheses that motivate the proposed research. To
affirm the thesis, I will evaluate these two hypotheses and produce the listed contributions
to establish their validity. Additional clarity for terms in blue are linked in the Glossary
(page 20).

Hypothesis A: Program Transformation Toward Semantic Repair

I hypothesize that

1. the domain of Separation Logic enables efficient, unassisted semantic-driven search and
correctness validation (no tests required) of program transformations resulting in fixes
that scale to real-world programs, including previously unknown bugs, and that

2. the domain of Separation Logic can be extended to fix additional bug classes using
efficient, unassisted semantic-driven search and correctness validation of program
transformations on large real-world programs, including previously unknown bugs.

Hypothesis B: Program Transformation Toward Improving Analysis

I hypothesize that rule-based application of semantic-driven program transformations (using
methods in Hypothesis A, or a priori specification) can efficiently improve analyses with
unassisted logic-based validation for real-world programs to

1. improve the effectiveness of existing static analyses to (a) find more bugs, (b) fix more
bugs, or (c) reduce false positives, and

2. improve the effectiveness of existing dynamic analyses to report fewer duplicate bugs.

Contributions

To affirm the Thesis Statement, I will produce the following concrete contributions. The
research will result in the invention, design, and implementation of the first unassisted, end-
to-end automated program repair systems for multiple bug classes, describe their effectiveness
for fixing real programs, and demonstrate applicability of program transformation to improve
existing analyses. The expected contributions of the dissertation are:

4



1. Development of semantic-driven search, application, and validation using an existing
Separation Logic-based bug-finding analysis. The approach will focus on three classes of
heap-based defects: null dereferences, resource leaks, and memory leaks. The approach
will fix previously undiscovered bugs in real programs, (unlike existing APR techniques)
and elides the need for tests.

2. Extension of (1) by developing semantic-driven search, application, and validation using
an existing logic-based bug-finding analysis to address at least one additional bug class.
Like (1), the approach will fix previously undiscovered bugs in real programs.

3. Development and use of program transformation techniques to demonstrate the im-
provement of existing analyses through program transformation. I will demonstrate
improvement of at least one static analysis in terms of analysis effectiveness, where
improvement is quantified as one of: the number of true bugs discovered (higher is
better), the number of bugs fixed (higher is better), or the number of false positives
reported (lower is better). I will also demonstrate improvement of at least one dynamic
analysis technique in terms of analysis output fidelity, quantified as deduplication of
bug reports (less duplicate reports is better).

3 Program Transformation Toward Semantic Repair

Proposed Research: Thrust 1

The vast majority of current APR techniques are test-driven: they rely on tests to identify
bugs, perform fault localization, and validate fixes [38, 43, 50, 55, 58, 64]. Relying on tests
introduces inherent limitations. Repair can only succeed if tests exist that exercise known
buggy functionality [57], and some bugs are simply hard to test for. Demonstrating techniques
to fix previously unknown bugs is imperative to advancing program repair in practice, though
unprecedented in current literature. Static analyses are used in practice to discover previously
unknown bugs [19, 31, 33], including common bugs that are hard to test for (e.g., resource
leaks). I propose to develop APR techniques that build on recent advances in static analysis
bugs in real-world programs, including previously unknown bugs.

Static analysis techniques and related logic-based reasoning use semantic abstractions
to identify buggy behavior [5, 31, 33]. My first insight is that these semantic abstractions
can provide precise correctness validation of fixes for cases where tests typically fail. Second,
these semantic abstractions present new ways of driving search and application of program
fragments to repair bugs.

Thrust 1 comprises two parts. The first is semantic matching and validation for fixing
heap properties (1A). This first part is existing research that shows the semantic matching
and validation works for heap properties. In the second part I propose to show that the
semantic technique for repair generalizes to one or more new bug classes. The approach,
evaluation strategy, and criteria for success in my existing work (1A) informs the planned
research extension (1B).
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3.1 Thrust 1A: Semantic Matching and Validation of Heap Proper-
ties for APR

Recent advances have lead to large scale industrial use of static analysis to detect common
heap-related defects like null dereferences and resource leaks [19]. I propose to develop bug
repair techniques that enable unassisted fixing of such bugs. My approach is to extend an
existing analysis based on Separation Logic [66] to drive automated fixing of heap defects.
My key insight is that the underlying analysis reasoning enables efficient and correct methods
for discovering and applying program transformations.

3.1.1 Preliminaries: Reasoning with Separation Logic

Infer [5] is a successful open source analysis based on Separation Logic and Hoare-style
reasoning that finds bugs at scale [19]. The analysis excels particularly at finding heap-related
defects in C and Java. Infer translates C and Java programs to the Smallfoot Intermedi-
ate Language (SIL) [14, 15] to reason symbolically over a program’s manipulation of the
heap. A SIL program consists of procedures which comprise sequences of instructions. SIL
instructions are annotated with pre- and postconditions assertions expressed in Separation
Logic. Assertions describe an instruction’s effect over symbolic heaps. Symbolic heaps
form the abstract domain to detect faulting conditions like memory leaks. The assertion
language encodes heap facts using points-to heap predicates over program and logical vari-
ables. Heap predicates form disjoint sub-heaps using the separating conjunction ∗ (read
“and separately”). The analysis uses local reasoning [61, 62, 81] with compositional sum-
maries [20] to efficiently infer specifications that summarize the effects of individual commands.

{P} C {Q}
{P ∗ F} C {Q ∗ F}

The Frame Rule

These methods are powered by the Frame Rule in Separation Logic,
which separates the parts of the heap that an instruction changes (the
footprint), and ignores the unchanged part (the frame). The Frame
Rule (shown right) allows the analysis of C to continue using just
the specification {P} C {Q} without considering the frame F . Frame inference [15, 20, 30] is
a key technique that automatically infers the necessary frame F so that the frame rule can be
applied in the analysis proof system. Infer implements this inference procedure and performs
symbolic execution of paths to discover violations of heap properties. To illustrate, Infer
reports the first resource leak in Figure 1b by identifying the path through line 6 where fp is
is dead. The symbolic interpreter enters a special fault state on this path, denoted formally
as C`, σ ; fault: the interpretation step ; for instruction C at location ` in symbolic state
σ results in a fault. The file pointer is still live on the heap (which we denote by a predicate
open, or {fp Z⇒ open}) at ` = 5 when it becomes dead: return`, {fp Z⇒open}; fault. At
this point the analysis reports a bug, and does not reason further about fp. This is where
my work starts, and I invoke the proposed repair procedure.

3.1.2 Existing Research: Semantic Matching and Validation
of Heap Properties for Repair

The core idea starts by defining desirable semantic transitions in the abstract domain which
I call Repair Specifications. Concretely, a Repair Specification is a Hoare-style triple that
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defines a precondition and a postcondition. The Repair Specification entails a singleton
heap F in the precondition that describes a fixable predicate for a placeholder variable pvar
and a corresponding single heap F ′ describing a fixed predicate over the same placeholder
variable pvar. Fix effects are generic to entire bug classes. For example, F = {pvar Z⇒open},
F ′ = {pvar Z⇒closed} describes a desirable fixing transition for resource leaks (as in our
running example). By reasoning over the abstract domain of what the code does, the
proposed approach supports multiple languages automatically and is resilient to syntactic
customizations.2 General semantic predicates like open correspond to API calls in the source
languages (like fopen in the C library or open FileReader objects in Java). These calls are
modeled by Infer, and translated to generic semantic predicates in SIL. While function
modeling requires some manual effort, it is typically already added for the analysis (it is for
Infer, and our repair technique can use the models without further effort).

Repair Specifications guide repair search by matching on the desired semantic effects of
instructions and procedures in SIL. We can express this formally by {F} ?CR {F ′} which
attempts to find an instruction CR that satisfies the pre- and postconditions. The key idea is
that the specification matches precisely the semantic components we care about, but can also
extend to match instructions or functions that affect other parts of the heap. For example,
we can express {F ∗ P} ?CR {F ′ ∗ Q} where P and Q may be nonempty. Frame inference
can be applied to pull out P (resp. Q) to precisely capture any side effects of the candidate
repair beyond the desired F , F ′. Thus, semantic characteristics can be precisely defined to
parameterize search, and makes extra heap effects of matched instructions explicit.

Ultimately, given a set of candidate fixing CR’s returned by repair search, the procedure
seeks a program change such that the analysis validates a fixing change. As noted in prior
work, validating correctness of a repair (in a static analysis context) depends on the semantic
abstraction at play [47]. In our case, we expect symbolic interpretation of the analysis to
avoid a fault by fixing a fault-inducing heap state. Prior work formalizes correctness in terms
of good and bad error traces [47]. Symbolic interpretation in the analysis is conceptually
similar: it validates that a change removes a faulting interpretation. In conjunction, fixes are
precise because semantic effects on the heap are matched and introduced explicitly, which
gives confidence that the rest of the program semantics are unchanged. To complete a repair
satisfying these conditions, the program must be changed syntactically at a suitable location.
I next describe the proposed approach to achieve this objective.
Approach. The repair procedure starts by searching the abstract program for terms
that satisfy a Repair Specification. The approach will rely on manually-supplied Repair
Specifications, which is done only once per bug class. I propose to target three heap defects
commonly found in practice [5, 18], and the focus of Infer’s analysis: null dereferences,
resource leaks, and memory leaks. Devising ways to infer Repair Specifications is a promising
idea, but based on preliminary work, effort for manual specification per bug class is low. I will
consider additive program transformations, because the types of bugs considered are typically
caused by lack of certain operations on explicit heap content (e.g., resource release, freeing
memory, or checking nullness) and symptomatic of common developer mistakes [7, 79].

Semantically, certain bugs can be fixed in various ways (e.g., null dereferences) [47].
Correct repairs may also admit code change at various locations [28]. As a concrete example,

2e.g., functions that wrap the C library call free will still match the specification
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fixing the first leak in Figure 1b can happen by closing fp on line 5, or just before line 4.
In general, the bug class bears on the choice of where to apply a fix (e.g., developers might
prefer the convention of immediately checking nullness before a dereference). I propose to
use the location ` reported by the analysis; preliminary results suggest that the convention
yields correct patches that are acceptable for merging into upstream repositories.3 I leave
open additional consideration of stylistic conventions or human judgment.

In general, multiple SIL instructions can satisfy a Repair Specification. I propose two
ways to rank candidates for patching: variable types and extra semantic effects. For example,
between the standard free function (which accepts a void *) and custom free function
wrapper (which accepts, say, a more specific type), repair prefers the custom free if the
variable type in the match specification is the same as the fault-inducing variable type. In
terms of semantic effects, the approach prefers candidates semantically “tight” matches, i.e.,
where extra semantic effects are absent. A fully automatic repair procedure requires making a
syntactic change and validating the change against the analysis. To make a syntactic change,
repair-satisfying SIL instructions are resolved to their source location, and SIL variables must
be renamed to fix the fault-inducing variable.

3.1.3 Evaluation Strategy and Criteria for Success

My goal is to correctly fix bugs for real programs, including previously unknown bugs.
The current approach will focus on three common bug classes supported by Infer (and
other static analyzers): null dereferences, resource leaks, and memory leaks. I will evaluate
my approach by sampling open-source projects (preferring popular, widely used ones) on
repository hosting sites like GitHub. I will demonstrate unassisted repair (modulo up front
Repair Specifications) for multiple languages (C and Java). I will include large programs
(>100KLOC) to demonstrate that the overall approach scales. In terms of efficiency, I will
measure (a) the speed of the repair procedure, (b) size of the program search space, and (c)
size of satisfying candidates to quantify efficiency. I consider search efficient if, for a single
real-world program, the repair procedure terminates in a time comparable to the analysis
(i.e., in the order of minutes and hours, not days). I will quantify cases where satisfying
candidates result from false positives in the underlying analysis to characterize search and
repair limitations. As applicable, I will submit pull requests of generated fixes to open source
projects as a strong (but not required) validating signal that the APR technique produces
correct and human-acceptable patches.

Comparative evaluation to existing APR techniques is difficult due to the unique bugs
and challenges I address. However, historically fixed bugs of the classes I consider can inform
a ground truth study to strengthen the validity of the approach. Existing bugs and fixes
from historic software activity will also be used to develop and test the approach.

The work is successful if it produces a new technique for correctly fixing bugs in large,
real-world projects, including previously undiscovered bugs for the three classes considered.
Further, the technique can function unassisted, and enables efficient search, application, and
validation of program transformations.

3For example, the approach generated the following patch, merged into an upstream repository on GitHub:
https://git.io/vpsoV.
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3.2 Thrust 1B: Extend Semantic Matching and Validation for APR

Based on preliminary results, the semantic matching and validation approach introduced
in 1A demonstrates ability to generalize further. I propose to develop additional repair
techniques that extend the bug classes considered in 1A. My insight is that (a) matching
over semantic effects of program terms and (b) analysis-based semantic validation enable a
general technique that enables correct, unassisted bug fixing.

3.2.1 Preliminaries: Logic-based Reasoning for Repair

Separation Logic is an effective formal foundation to find heap-related defects; my initial work
shows that it is also effective for repair. Semantic and logic-based techniques demonstrate
similar utility for discovering defects beyond those considered so far [29, 34, 37, 69–72, 74].
My intuition is that these techniques can enable effective repair for further bug classes.

Recent work develops semantic frameworks [33, 69] for building bug-finding and verification
tools [6, 34, 52, 74]. Frameworks like K [69] and SeaHorn [33] treat program semantics as a
first class concern and express the behavior of program terms with a logic representation.
Infer can also be considered a framework: it provides a plugin interface for implementing new
analyses that hook into the separation logic reasoning engine. These analyses detect buffer
overflows, arithmetic overflows, concurrency errors, information leaks, and further bugs that
are actively targeted by APR techniques [25, 45–48]. Like Infer, semantic frameworks (e.g., K
and SeaHorn) detect bugs with respect to a logical abstraction of semantics. Matching Logic,
used by K, is a first-order logic variant for specifying and reasoning about structure by means
of patterns and pattern matching [70]. Matching Logic is theoretically appealing because it
generalizes other logics, including Separation Logic. That is, Separation Logic can be framed
as a Matching Logic theory [68]. It provides analogous support for local reasoning [62] using
frames [70], but also extends to, e.g., program environments beyond heap. Matching Logic
has also been used to check reachability properties [71, 72]; recent work demonstrates that
off-the-shelf reachability tools can directly enable repair procedures [59]. Conceptually similar
to Infer, K can perform path directed symbolic execution to discover bugs [10]. My insight is
that these methods suggest a natural extension to repair bugs not considered yet (e.g., ones
with non-heap properties).

3.2.2 Proposed Research: Extend Semantic Matching and Validation for Repair

The key idea is that semantic matching and validation for repair generalizes to analyses
and buggy properties that express semantic effects over state transitions (i.e., as pre- and
postconditions). This theoretically enables precise program repair for new classes of bugs
targeted by recent analyses (and their underlying semantic reasoning). I propose to develop an
unassisted repair procedure for an additional bug class using an existing semantic framework
or analysis. Several tools implement logic-based reasoning, most notably the K framework [69],
SeaHorn [33], and Infer [5]. Selecting a semantic framework presents exciting potential for
developing new repair techniques, but also presents risk that may arise during the early stages
of use, including tool complexity, tool support, or documentation. I will therefore follow a
staged process to determine suitability for each of the frameworks in the following order: the
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K framework, SeaHorn [33], and then Infer [5]. Infer presents a safe alternative to K and
SeaHorn, given my prior experience.
Approach. I will focus specifically on extending the Repair Specification principle in the
chosen semantic framework (i.e., matching desirable semantics in pre and postconditions).
I will implement prototype tooling for fixing the new class of bug that the framework can
support.

My first proposed approach is to develop repair using the K framework because it treats
program semantics as a first class concern, is mature and actively developed, and has
demonstrated ability for finding bugs [34, 74]. I will focus initially on automating repair
with Matching Logic, the underlying reasoning of K. Currently, K supports finding through
integer overflows, buffer overflows, and more. If I assess that K is unsuitable for repair, I will
consider SeaHorn as the second option. SeaHorn mainly targets buffer overflow bugs [33].
SeaHorn uses Horn clauses as an intermediate language and performs symbolic execution
to perform precise memory analysis. If SeaHorn is also unsuitable I will focus on extending
Infer’s analysis, which extends to information flow bugs (i.e., dangerous source-sink flows),
concurrency bugs, or buffer overflows [5]. Regardless of the specific logic abstraction and
tooling, my focus will be to extend the method of semantic matching and validation for repair.
As with 1A, the objective is to target real world bugs.

As in 1A, repair presents additional unique challenges beyond simply semantic bug
detection. In particular, repair requires mapping semantic abstractions back to syntax, entails
valid syntactic modification to the program, and presents the choice of patch location. I will
develop techniques to allow unassisted repair similar to 1A, and anticipate that methods
and conventions from 1A will inform design choices to effectively repair further classes of
bugs. At least the following bug classes are in scope for extending repair:

– Buffer overflows
– Integer underflow/overflows
– Use-after-free/Double-free bugs
– Division-by-zero bugs
– Information flow bugs

– Concurrency bugs
– Uninitialized variables
– Foreign Function Interface (FFI) bugs
(e.g., FFI leaks)

3.2.3 Evaluation Strategy and Criteria for Success

The proposed work extends 1A, so I will evaluate efficiency of repair search and application
similarly (cf. Section 3.1.3). The choice of analysis and bug bears on the analysis time; I
will similarly consider search efficient if the proposed repair procedure terminates in a time
comparable to the original analysis. I will demonstrate unassisted repair (modulo up front
specification) for large programs to show that the approach scales. Comparative evaluation
to existing APR techniques will remain difficult and I will consider ground truth historically
fixed bugs to compensate. The work is successful if it satisfies the criteria above, as in
Section 3.1.3.
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3.3 Preliminary Results

My work using Separation Logic as a formal foundation for program repair demonstrates
that practical program repair is possible for previously undiscovered bugs in real programs.
I prototyped the technique in 1A with FootPatch, a push-button tool for fixing null
dereferences, resource leaks, and memory leaks. Table 1 summarizes the results on a
convenience sample of 3 C programs and 2 Java programs. Overall, FootPatch correctly
fixes 15 resource leaks, 6 memory leaks, and 2 null dereferences. False positive rates are
low, and arise from Infer’s analysis missing clean up functions (e.g., that free memory).
FootPatch demonstrates the ability to scale to real-world programs, and has produced
upstream patches accepted into popular open source software on GitHub. The main take
away is that semantic-driven matching and patch validation approach efficiently and correctly
fixes a number of real bugs. The results present empirical evidence in support of extending
semantic repair to additional logic-based abstract domains and bug classes as proposed for
1B. Currently, however, there is no evaluation effort yet for supporting new bug classes as
proposed in Section 3.2.2.

Time Bug Max
Project Lang kLOC (s) Type Bugs Cands Fixes FP

Swoole C 44.5 20 Res. Leak† 7 1 1 0
Mem. Leak† 20 3 6 3

dablooms C 1.2 9 Res. Leak† 7 2 7 0
redis C 115.0 79 Res. Leak† 8 8 6 0
Apktool Java 15.0 584 Res. Leak† 19 3 1 0
error-prone Java 149.0 262 Null Deref 11 66 2 0

Table 1: Bugs repaired with FootPatch. “Bugs” is the number of bugs detected by Infer’s static analysis.
“Max Cands” is the maximum number of IL repair candidates for the bug (pre-compatibility check). “Fixes”
are the number of unique patches fixing unique bugs (post validation). † indicates one or more fixes for
previously undiscovered bugs.

4 Program Transformation Toward Improving Analysis

Proposed Research: Thrust 2

Analyses must approximate [42], trading theoretical properties (e.g., precise alias reasoning,
soundness) for practical benefits (e.g., speed, accuracy) and vice versa [19, 23, 34]. These
tradeoffs manifest as implicit tool assumptions that are difficult to trace and modify [23].
Such assumptions are also generally applied, and can limit confidence in soundness of analysis
results [23] or accurate bug detection [22]. My insight is that program transformation can
augment static and dynamic analyses to improve analysis results.

4.1 Thrust 2A: Improve Static Analysis Effectiveness

Analyses may abort when an error is detected. This is conservative and generally acceptable
behavior: if analysis continues after detecting an error, the result can be invalid or unsound
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because the program semantics may be affected by the error in unpredictable ways. However,
manual controls for customizing analysis reasoning and assumptions can improve the effec-
tiveness of static analyses [21, 34]. My insight is that automated program transformation
can change analysis behavior to improve results, so that the original analysis can find more
bugs, fix more bugs, or reduce false positives.

4.1.1 Preliminaries: Modifying Analysis Behavior

Consider the Runtime Verification Match tool (RV-Match) which detects undefined behavior
in C programs using a formal C semantics [34]. Focusing on strict correctness from a semantics
perspective, RV-Match originally aborted analysis the first time it detects undefined behavior.
The authors soon discovered limitations of this (ultimately correct) choice: implementation-
defined behavior of various compilers is considered acceptable by developers. RV-Match
was subsequently changed to continue for “likely expected behavior”, and added ways to
manually customize formally-defined semantics for such cases [34]. Another example is Infer,
which fails to find both resources in the example Figure 1b, and memory leaks that depend
on the same data structure.4 These analysis behaviors are not purely engineering concerns,
but conservative compromises in the underlying semantic reasoning of the analysis. Code
instrumentation has been used to identify deliberate unsoundness in analysis behavior [23],
but does not proactively focus on improving the analysis results.

4.1.2 Proposed Research: Better bug finding and fixing

My insight is that semantic-driven program transformation can improve static analysis for
finding bugs, fixing bugs, or reducing false positives (without modifying the underlying
analysis). My initial work using FootPatch motivates the idea: Infer can detect strictly
more true memory leaks and resource leaks after correct patches are applied. Footpatch can
automatically fix bugs correctly, and enables Infer to find more bugs in 3 active C projects;
FootPatch can consequently also fix the newly discovered bugs. Tools like RV-Match
suggest the idea generalizes to other analyses and bug classes. For example, undefined C
behavior can be temporarily changed so that RV-Match continues analyzing.

My key observation is that conservative analysis assumptions causing “abort-on-error”
behavior is sensitive to the underlying semantics of the bug class. This means that positively
augmenting analysis behavior relies on targeting bug-specific semantic behavior, or program
constructs (e.g., loops) that can confound analysis of bug-specific behavior. I propose a
principled study of these initial observations to demonstrate analysis improvement. The
expected output of this work is to produce the first systematic study that explores, develops,
and evaluates semantically-derived program transformations for improving the static analysis.

My work with FootPatch suggests three axes to improve current static analyses: to
(a) find more bugs, (b) fix more bugs, or (c) reduce false positives. These directions are
related and complementary, e.g., more bugs can be fixed if more bugs are found. In the
interest of a conducting a principled study, I will focus primarily one axis: improving analysis

4For example, a leaked variable hmap can only be detected and freed (Fix: https://git.io/vxjAO) after
the leaked node root is detected and freed inside it (Fix: https://git.io/vxjAY).

12

https://git.io/vxjAO
https://git.io/vxjAY


reasoning and coverage to find more bugs, but leave open the possibility of substituting and
supplementing results impacting objectives (b) and (c).
Approach. I will choose two or more popular static analyses to demonstrate improvement
using program transformation. Infer is a natural first choice given existing infrastructure
to produce automatic fixes (Section 3.1). Additional candidates include analyses covered
in the literature: the Clang static analyzer [8], Frama-C [27], Clousot [31], Seahorn [33],
DR.CHECKER [53] or another. I will focus on developing bug-fixing program transformations
for bug classes that the analyses target, such as null dereferences, leaks, and overflows. There
is a precedent for using bug fixing program transformations targeting null dereferences, buffer
overflows, and more in Clousot [47]. Analysis customization through program transformation
also complements existing work that customizes Clousot’s analysis to improve performance
and bug finding [24].

Program transformations will be expressed as templates for each particular bug class. I
will develop a rule-based approach that applies these templates based on the analysis error
reports. Principles of semantic repair in Section 3 are applicable here: inference and use of
fixing patterns, correctness validation by the analyzer, and location information to drive patch
application. In addition, complex program structures (e.g., loops and conditional predicates)
can limit analysis coverage or lead to imprecise analysis results. Such structures offer
opportunity for analysis customization. I will investigate fundamental reasoning limitations
arising from such structures to inform further program transformation templates.

4.1.3 Evaluation Strategy and Criteria for Success

My goal is to demonstrate practical utility of program transformation for improving analyses.
Thus, my priority will be to demonstrate analysis improvement on real-world programs. I
will sample open source projects (preferring popular, widely used ones) on repository hosting
sites like GitHub. I expect the analyzers to support large projects written in common
programming languages (e.g., C, Java), demonstrating that the approach works at scale. I
will focus on improving analysis output for previously unconsidered bug reports (including
false positive reports). However, it is difficult to ensure that an analysis can produce new
bug reports to inform a systematic evaluation. Most analyzers have a history of fixing
bugs (documented in the literature, on the tool website, or in project commit logs). As a
risk mitigation strategy, I will use historic bug fixes and project revisions to prototype and
evaluate the proposed technique. Initial development will entail specifying repair templates
(automatically inferred, manually specified, or both) and implementing conditions for patch
application. Beyond this up front cost, the technique should operate unassisted, and be
able to react to analysis validation, monitor changes in analysis behavior, and apply patches
automatically to discover new bugs. I will demonstrate efficiency by measuring the time it
takes to complete a program transformation cycle for discovering new bugs. This includes
measuring the performance impact of transformation on the analysis. If permitting, similar
bug classes for different analyses can inform a comparative evaluation of to further evaluate
effectiveness and generality of the technique.

The work is successful if applying program transformation can strictly improve the original
analysis, and meets the criteria in the evaluation above. Namely, (a) program transformation
is automatic (modulo up front specification) (b) analysis overhead and duration is competitive
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compared to the original analysis, and (c) the technique works for real programs.
I anticipate that my approach using program transformations can reveal shortcomings

in the analysis implementation that developers can rectify. Manual improvement to the
analysis implementation as a consequence of varying programs supports validation of the
claim that program transformation can improve existing analysis, but I will not explicitly
evaluate benefits where the underlying analysis itself is improved. The proposed approach
will focus on treating an existing static analysis as a “black box” and I will evaluate program
transformation for profitably improving the analysis output without modifying the underlying
analysis.

4.1.4 Preliminary Results

Using FootPatch allows Infer to discover additional memory and resource leaks in three
of the six C programs in Table 1 (Section 3). There is no systematic evaluation yet of
FootPatch for improving analyses, which will be informed by considering additional
programs and further investigation of the underlying analysis reasoning. Nevertheless, the
repair approach shows that automated program transformation can interact positively with
the analysis to produce better results. Redis is one example of a large program (>100KLOC)
that demonstrates potential of improving analysis via program transformation at scale.

4.2 Thrust 2B: Improve Dynamic Analysis Effectiveness

Similar to analyses (but more concretely), programs abort when an error occurs during
dynamic execution. Again this is conservative and generally acceptable behavior: if program
execution hits a null dereference, we prefer that it crash rather than execute arbitrary
code. Analogous to changing static analysis behavior, changing program behavior to tolerate
dynamic execution errors can be beneficial to the program operation itself [51, 67]. My insight
is that program transformation can also improve dynamic analysis output, specifically for
high fidelity error reporting and crash deduplication.

4.2.1 Preliminaries: Modifying Program Behavior

Modifying program behavior has been explored for producing fault-tolerant behavior and
neutralizing vulnerabilities. Failure-oblivious computing [67] and recovery shepherding [51]
show that programs can beneficially continue executing by neutralizing buffer overflows,
null dereferences, and division by zero errors. These techniques restrict focus to improving
execution of the program. My insight is that program modification can improve analysis
output in terms of bug reporting and triage. For example, symbolic executors and fuzzers
generate can generate tens of thousands of crashing inputs for a program [11, 22], thousands
of which can be duplicates that correspond to the same bug [22]. Automated crash triage
seek to map multiple crashing inputs to the same bug. Root cause analysis of a crash is
hard [41, 45, 58] so existing techniques and tools identify unique bugs approximately using
callstack information [1, 56], branch coverage [2, 3], path constraints [65], and machine
learning [22]. In contrast, actual fixes for known bugs can serve as ground truth to precisely
map crashing input to bugs [22].
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4.2.2 Proposed Research: Semantic Crash Bucketing

My insight is that program transformations for fault tolerance [67] and repair (as in Section 3)
can approximate actual fixes for bugs commonly found by dynamic analyses (like null
dereferences and buffer overflows) to precisely identify and triage bugs. I propose Semantic
Crash Bucketing, which seeks to classify unique bugs by bucketing related crashing inputs as
a function of program transformations (i.e., a program delta). The core idea is that changing
a program’s semantics with approximate fixes can accurately and automatically constrain
crashing behavior in a way that mimics real program fixes. My intuition is that program
transformation can be more sensitive to the underlying semantic property causing a crash and
thus suffer less imprecision than existing approaches. The primary application is to improve
the output of dynamic analysis and testing tools, like fuzzers and symbolic executors, that
are particularly susceptible to reporting duplicate errors.

Existing approaches typically hard code ad-hoc methods of deduplication (e.g., blacklisting
crash patterns [3], callstack traces [1], or branch sequences [2]). In contrast, Semantic Crash
Bucketing opens opportunity to customize crash bucketing and operates independent of the
diverse, hard coded assumptions across testing tools. The main challenge of the proposed
approach is that program transformations can overfit to crashing inputs (similar to how APR
techniques can overfit to tests). For example, suppose a program contains more than one
unique bug, each with independent fixes. Inserting exit(0); at the beginning of a program
will satisfy the criterion of neutralizing all crashes, but will associate (and underapproximate)
all unique bugs with a single fix. To be effective, program transformations must therefore
have constrained semantic effects to precisely identify unique bugs.
Approach. The proposed approach shares similarities to that proposed for improving static
analyses. I will focus on developing bug-fixing program transformations for bug classes
typically found by fuzzers: null dereferences and buffer overflows. Program transformations
will be expressed as templates. In contrast, the conditions for patch application will depend
on program behavior, in response to a crash. I will develop a rule-based approach that
predicates patch application on semantic cues informed by crashing behavior. The semantic
cues are sensitive to a particular bug class. For example, debuggers such as GDB can indicate
a null dereference by reporting the last line a program executed, such as x = p->q;. This
behavior can suggest a change to check whether p is null as the reason for the crash (and all
related crashing inputs). Such an assumption must then be validated (the program should
no longer crash) to be a candidate for identifying a unique bug.

While null dereference crashes can be bucketed based on failure location, the same is not
true for other general bug classes. For example, buffer overflows may only manifest in a crash
after a corrupted stack value is accessed. However, a bug-fixing transformation should prevent
overflow at the point-of-memory-corruption (not point-of-crash). Relying on point-of-crash
for buffer overflows may lead to spurious error reports based on the stack contents. These
semantic differences make the crash bucketing problem non-trivial, and require multiple
rule-based strategies per bug class.

Rules for patch application can profitably incorporate specialist knowledge to remove
duplicate reports.5 These rules enable customizing sensitivity to the semantic property of

5https://twitter.com/azonenberg/status/966738179486134272
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the bug in conjunction with program transformation (i.e., nullness, or unsafe buffer lengths)
to achieve greater precision than, e.g., path execution uniqueness. There is precedent for
using repair templates that neutralize exploitation of buffer overflows [45], which informs my
template construction for deduplicating error reports.

Note that the intention of the proposed approach is not to identify fully the root cause
(which is hard), but to approximate it using a combination of patch application rules, program
transformations, and validation of correct program execution.

4.2.3 Evaluation Strategy and Criteria for Success

My goal is to demonstrate that semantic-driven program transformation can improve output
fidelity of existing dynamic analysis and testing tools for real programs. I will focus on
duplicate error reporting as the measure of output fidelity (less duplicates is better). In the
interest of generality, I will choose three state of the art fuzzers that use different dynamic
analysis techniques to perform path exploration and crash deduplication: American Fuzzy
Lop (AFL) [2], CERT BFF [1], and Honggfuzz [3]. I will start by building a corpus of crashing
inputs to measure ground truth duplicate error reporting of these tools, for a selection of
unique bugs. ground truth duplication is measured by bucketing the crashing inputs using
a correct fix. I will use these ground truth results to conduct a comparative evaluation:
ideal deduplication (determined using correct fixes) will inform the precision of using the
technique of approximate fixes proposed above. Semantic Crash Bucketing with approximate
fixes applies to newly discovered bugs, but to conduct a ground truth comparison I will need
existing bugs with historically correct fixes. I will use historical bug discoveries by the existing
fuzzers (such as SQLite bugs discovered by AFL), and extract correct fixes to conduct the
study. I will evaluate on at least two classes of bugs commonly detected by these fuzzers:
null dereferences and buffer overflows. I leave open the possibility of extending the approach
to work for additional memory corruption bugs or arithmetic overflow errors. I will measure
standard metrics to evaluate efficiency : the time it takes to produce approximate fixes given
a crashing input, and the rate of failure (i.e., when the technique fails to produce a patch). I
will qualify limitations of the approach by comparing real and approximate fixes.

Similar to Section 3 for static analyses, initial development will entail specifying repair
templates (automatically inferred, manually specified, or both) and implementing conditions
for patch application. Beyond this up front cost, the technique should operate unassisted,
and produce output of deduplicated crashes by monitoring changes in program behavior and
applying patches automatically to identify unique bugs.

Comparison to existing, alternative deduplication techniques in the literature may com-
plement the evaluation, but lack of available bug corpora and tool implementation from
previous studies (e.g., [22, 26, 65]) generally preclude such a comparison. Evaluation will
further benefit application to symbolic execution engines (e.g., KLEE [17]), but I leave this
extension open.

The work is successful if Semantic Crash Bucketing demonstrates improvement of dynamic
analysis output fidelity compared to the original method. Analysis output is quantified as
deduplication of bug reports. In addition, the work should (a) demonstrate applicability to
real programs, (b) integrate automatic patch application and validation reasoning, and (c)
produce tooling that runs in competitive time compared to built-in deduplication methods
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(i.e., produces patches in the order of seconds to minutes).

4.2.4 Preliminary Results

I have implemented a prototype to bucket crashes for null dereferences. There is work in
progress for supporting buffer overflows. The current technique for patching null dereferences
starts by identifying pointer dereference patterns at the crash site, for some crashing input.
If a program variable is possibly null, a null check for the program variable is inserted at
that location. The patch approximates error handling by exiting the program on condition
of being null (similar to the common idiom of return -1; for C programs). With respect
to identifying bug uniqueness, the patch is more accurate than all built-in deduplication
methods for the three fuzzers considered. Table 2 illustrates these early results. Each row for
the projects w3m and SQLite correspond to one unique bug.

Project Type ID CrashGen AFL Fuzz CERT BFF HFuzz

w3m Null-deref

1 458 103 25 75
2 545 23 0 0
3 507 36 0 6
4 525 11 0 0

Total 2,035 173 25 81

SQLite Null-deref

1 190 25 *2 *11
2 481 85 *1 4
3 152 38 6 *17
4 325 48 0 1

Total 1,148 196 *9 *33

Table 2: For 8 unique null dereference bugs in SQLite and w3m, Semantic Crash Bucketing detects roughly
517 duplicate error reports that built-in fuzzer methods cannot distinguish. Approximate fixes do precisely
as well as the real fix, except for Bugs 1 and 3, marked by (*). (*) indicates a small margin of error: just one
crashing input is missed by an approximate fix, compared to the true fix.

CrashGen is the starting corpus of duplicate crashing inputs for each unique bug.6 Each
fuzzer is seeded with these inputs and use their internal methods to deduplicate and minimize
crashing inputs. AFL uses branch sequences to determine uniqueness, CERT BFF and
HonggFuzz use a callstack techniques. Each value in the fuzzer columns indicate the number
of duplicate crashing inputs detected by Semantic Crash Bucketing. For example, AFL
considers 103 crashing inputs corresponding to Bug 1 to be unique bugs. Patching (with
either the true fix or the approximate fix) reveal these crashing inputs are the same bug.
In some cases, the fuzzer’s built-in method reports 0 duplicates. In these cases, patching
does no worse than built-in methods (e.g., Bug 2 for HFuzz). The main point is that (a)
overall, program transformation beats the diverse best effort techniques in current state of
art tools, and (b) illustrates that changes can be semantically precise with respect to a bug
(i.e., limited to no overfitting).

6Details of how these are generated is elided for brevity.
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5 Research Timeline
Figure 2 summarizes the timeline for the proposed work. The proposal initiates an 18 month
time period to complete all dissertation work and defend the thesis in October 2019. The
first research thrust (1A) lays the groundwork for semantic matching and validation using a
Separation Logic abstraction. I have recently published work that evaluates the approach on
11 C and Java projects [76].

Figure 2: Proposed Research Timeline.

Although not the original intent or focus of the work, it establishes preliminary evidence
for improving static analyses (2A). I have not begun work on for improving static analysis,
which will be my next direction. Some reuse of FootPatch tooling may profit the systematic
study proposed by this work. However, an important aspect of improving static analysis is
to demonstrate generality for additional tools and techniques. My intent to first work on
improving static analysis is partly due to recent progress on improving dynamic analyses
(2B), wherein I developed tools for flexible syntactic transformation [77]. My work for
improving dynamic analyses is currently in preparation and has not been peer reviewed. I
have completed a preliminary evaluation of an initial approach for improving dynamic analysis
output (deduplication of bug reports). The approach for dynamic analysis improvement
may require extension to further classes of bugs, or require extension to other dynamic
techniques (e.g., KLEE) if feedback from the first round of peer review (expected July
2018) is unfavorable. I intend to extend the semantic-matching and validation APR work
after the “Analysis Improvement” component of the thesis. The two directions are in fact
complementary, though no work has been done on extending the Separation Logic APR
technique. I am prioritizing static analysis improvement because it presents especially
interesting potential with preliminary evidence. Progress in this area may further inform
choices for techniques and tooling to adapt for the semantic-based APR extension.
Risks and Mitigations. I identify three main risks. Risk 1: Theoretically promising
abstractions proposed for extending semantic-based APR (e.g., Matching Logic) are not fully
available, usable, or efficient in current tooling. This poses risk to developing and integrating
a semantics-based repair. My mitigation is twofold. First, I will follow a staged process to
determine appropriate tooling (cf. Section 3.2); Infer remains in scope for other classes of vul-
nerabilities and a stable fallback. Second, I will construct bug finding analyses from the ground
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up with subsets of the theoretical abstractions to support semantic repair. Risk 2: Analysis
techniques and tooling for improving static analysis preclude finding previously unknown bugs.

Figure 3

To mitigate, I will use historically found bugs and replicate scenarios
on older software revisions where no a priori knowledge of a bug
was available. Risk 3: the current approach and evaluation of
improving dynamic analysis requires additional evidence to support
the claims of improving dynamic analysis output. The remedy is
straightforward: demonstrate generality to symbolic executors and
handle additional bug classes beyond null dereferences and overflows.
These risks are ranked in Figure 3.

6 Conclusion
The goal of Automated Program Repair is ultimately to cut costs of software quality assurance
(QA). However, APR technology currently falls behind other first-class QA tools like linters,
gradual type checkers, and static analyzers. To become a first-class concern, APR must
present compelling real-world utility. The goal of this proposal is to advance APR technology
and demonstrate real-world application to (a) fixing bugs (specifically without tests) and
(b) improving existing analyses. The proposed thrusts enable the (largely unprecedented)
automated fixing of previously unknown bugs and present the (currently unexplored) ability
to improve existing QA tools. To achieve these goals, I propose semantic-driven search
and application of program transformations using logic-based domains to validate program
changes. I argue that semantic-driven approaches are key to discovering and validating
program transformations for correct repairs and positively augmenting analysis behavior.
My hope for this work is that demonstrating relatively small scale, real-world application of
new program repair techniques urges greater use of program transformation as a first-class
approach for software QA.
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Glossary
bug class A bug in our context is a software flaw that leads to an error (i.e., undesirable

program behavior); an error is a deviation from expected behavior defined by a validation
oracle. A bug class refers to a sort of bug that shares an undesirable semantic trait.
Bug classes occur across multiple programs in multiple locations. “Null dereference
bugs” is a concrete example of a bug class. Analyses generally identify the set of bug
classes they detect by name, or with an identifier (e.g., CWE-120 for security bugs). 4,
5

logic-based Logic-based implies the use of a logical domain during a procedure. In the
context of this paper, such procedures include analyses that use a particular logic
domain (e.g., Separation Logic). The term logic-based can be used in connection with a
validation procedure (i.e., validation with respect to the logical domain of an analysis),
or a straightforward application of logical implication (e.g., when applying program
transformations to categorize program behavior by applying program transformation).
4, 5

semantic-driven A semantic-driven process in the context of this work is understood as a
deterministic process which derives from considering semantic properties of programs.
4, 5

unassisted An unassisted process means no human-in-the-loop is required for a process to
complete. In the context of automated repair, this means that from the initial point
of bug discovery until the end point of validating an applied patch requires no human
intervention. Note that “unassisted” does not preclude one-off, up front manual effort
(e.g., specifying patch templates) which is done before the automated process begins. 4
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7 Supplementary: Executive Summary of Proposed Work
I summarize the remaining proposed work to complete the dissertation. The research that
remains to be done is expected to produce roughly two publishable units.

7.1 Extension of Semantic Matching and Validation for APR

I will extend semantic-driven matching, application, and validation for at least one bug class
(but possibly more). The scope of possible bug classes include at least the following bugs:

– Buffer overflows
– Integer underflow/overflows
– Use-after-free/Double-free bugs
– Division-by-zero bugs
– Information flow bugs

– Concurrency bugs
– Uninitialized variables
– Foreign Function Interface (FFI) bugs
(e.g., FFI leaks)

I strongly anticipate that the work will address one of these classes. However, I may
branch to a different class not enumerated here if appeal presents itself. I’ve identified at
least the three existing tools to implement the repair approach: the K framework, SeaHorn,
and Infer. These frameworks are not exclusive, and I may branch to a different one if appeal
presents itself.

The approach will be efficient, scalable, and unassisted. In the context of this work,
these qualifiers mean the following:

– Efficient. The repair procedure for fixing a bug terminates in a time comparable to the
original analysis. Performing repair requires at least running the original analysis, and
a rerun of the analysis to validate one or more program changes. The repair procedure
itself also requires time to run. Hence, a “comparable” runtime implies that the repair
procedure terminates in the order of 1x to 10x of the original analysis runtime.

– Scalable. The procedure works on programs in the order of 100,000 lines of code. I
anticipate evaluating on projects containing at least 100KLOC. However if the largest
project used in the evaluation is, for example, 50KLOC to 80 KLOC, I consider it
sufficient to validate the ability to scale to 100KLOC (i.e., it is in the order of 100KLOC).

– Unassisted. Modulo up front specification and configuration, the procedure should
automatically produce validated patches without human assistance.

I will evaluate the approach on 5 to 15 open source projects. I strongly anticipate that the
extension will be able to fix previously unknown bugs. However, lack of fixing previously
unknown bugs will not invalidate the overall claim of the thrust and thesis because (a) I
demonstrate application to previous unknown bugs in prior work that forms part of the claim
(1A) and (b) I foremost aim to demonstrate the claim on real-world programs and can use
historic bugs to validate applicability to previously unknown bugs (i.e., by using older project
revisions to construct a scenario where there is no prior knowledge of a bug before running
an analysis and applying repair).
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7.2 Improve Static Analysis Effectiveness

The expected output of this work is to produce the first systematic study that explores,
develops, and evaluates program transformations applied to analysis targets to improve
the results of real-world static analyses on those targets. Improvement refers to improving
analysis output (not the implementation of the analysis itself) in the form of (a) more true
positive bug reports, (b) fewer false positive bug reports, (c) more true automated bug fixes.
I aim to demonstrate an at minimum quantitative improvement as follows: I will show
in the order of 5-10% improvement for any of (a)-(c) on a convenience sample of 5 to 15
open source projects. In the unlikely case this metric is unmet, the study will still present a
novel contribution documenting the applicability of the proposed approach, and the extent of
improvement possible. As an additional risk mitigation, I propose to substitute the primary
improvement metric for improving the analysis runtime using program modification and
aim to demonstrate at least a 2x analysis speedup for one or more bug classes reported by
the original analysis.

I anticipate that autogenerated fixes in Thrust 1 can, in part, realize these benefits.
However, I anticipate (due to my existing preliminary work improving dynamic analyses in
1B) that bug- and analysis-specific template program transformations are needed to fully
realize the benefits. Additional example program transformations, which I anticipate can
reveal or overcome imprecision in existing analyses, include:

– Releasing a resource twice or removing
correct calls that release a resource

– Adding or removing null checks

– Adding or removing loop constructs
– Changing array bounds or bound checks

The proposed work will identify and use these kinds of transformations to improve analysis
output. Both the discovery of such program transformations (either automatically inferred or
manually specified up front or both) and their application is expected to be novel contributions
of the proposed work. I will evaluate on at least two existing static analyses to show that the
approach generalizes, but possibly more. At least the following existing analyses are in scope,
though I may branch to others if appeal presents itself.

– Clang static analyzer
– NullAway
– Infer

– Frama-C
– SeaHorn
– CodeContracts

– DR.CHECKER

The approach will be efficient, scalable, and unassisted. In the context of this work,
these qualifiers mean the following:

– Efficient. Similar to the above: producing patches to improve analysis terminates in
the order of 1x to 10x of the original analysis time. I consider the approach efficient if
the procedure runtime is at least in this range per discrete unit of improvement (i.e., a
single newly reported bug, fixed bug, or false positive removed). My rationale is that
rerunning static analyses is generally cheap: if it takes just one or two minutes to report
a new bug or produce and validate a program transformation automatically, it is still
competitive (or better than) human effort. I anticipate that efficiency can be improved
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with caching or by applying multiple patches at once, but leave this exploration open
based on need. The failure mode where I substitute analysis runtime as the primary
metric will by definition be efficient (at least 2x analysis speedup for one or more bug
classes by the original analysis).

– Scalable. The same as above.
– Unassisted. Modulo up front specification and configuration, the procedure should

automatically produce patches that improve the analysis output.

I will focus on demonstrating improvement for previously unknown bugs or false positives.
However, it can turn out that this is difficult to demonstrate for the latest revisions of the
project selection. As a risk mitigation strategy, I will consider historic bugs (i.e., by using
older project revisions) to validate the ability to improve analysis in a scenario where there is
no prior knowledge of analysis output.
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