
Verifying and Displaying Move Smart Contract Source Code for
the Sui Blockchain

Rijnard van Tonder
MystenLabs, Inc.

USA
rijnard@mystenlabs.com

ABSTRACT
Smart contract development presents additional challenges beyond
traditional software workflows, e.g., locally in IDEs. For smart con-
tract developers to understand and trust code execution, they need
to write and use software libraries with a comprehensible code
representation—i.e., source code. However, blockchains do not typ-
ically store the original source code of smart contracts, but a con-
densed bytecode representation. Thus, when developers consult
smart contract source code, they need to be sure that it corresponds
to the same bytecode on the blockchain. Depending on available
developer tools, this process can be ad-hoc, cumbersome, or opaque.
In this paper we present our design and implementation of a new
tool that serves to verify Move smart contract source code against
its bytecode representation on the Sui blockchain. We demonstrate
the user-facing shift where developers now benefit from seeing
source code in their browser instead of bytecode. We further high-
light future features and research directions that verified source
availability brings to smart contract developer experience.

KEYWORDS
smart contracts, source code, bytecode, compilers, program com-
prehension, software development, blockchain
ACM Reference Format:
Rijnard van Tonder. 2024. Verifying and Displaying Move Smart Contract
Source Code for the Sui Blockchain. In 2024 IEEE/ACM 46th International
Conference on Software Engineering: Companion Proceedings (ICSE-Companion
’24), April 14–20, 2024, Lisbon, Portugal. ACM, New York, NY, USA, 4 pages.
https://doi.org/10.1145/3639478.3640038

1 INTRODUCTION
Smart contract development presents additional challenges beyond
traditional software workflows, e.g., locally in IDEs. The runtime
execution and output of a smart contract is wholly dependent on a
distributed system that ensures the integrity of a blockchain. For
smart contract developers to understand and trust code execution,
they need to write and use software libraries with a comprehensible
code representation—i.e., source code. However, blockchains do not
typically store the original source code of smart contracts, but a

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICSE-Companion ’24, April 14–20, 2024, Lisbon, Portugal
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0502-1/24/04. . . $15.00
https://doi.org/10.1145/3639478.3640038

condensed bytecode representation. This bytecode representation
strips away useful information in typical software development,
like comments, docstrings, and syntax that help explain the imple-
mentation.

Just as in usual software development, smart contract developers
generally need and depend on a source representation to write a
smart contract. The key difference is that developers must trust
that the source they are developing against corresponds to the
bytecode that will be linked against their code on the blockchain.
In general, a combination of trust and tooling can help ensure that
such source code really is the same as the bytecode contract that is
executable on the blockchain. For example, when developers decide
to publish their smart contract on a blockchain, a tool could first
check the integrity of the dependencies. The tool could compile
every source dependency into bytecode that the developer depends
on, and then check that the local output of bytecode matches the
existing on-chain bytecode (that the yet-to-be-published smart
contract will depend on once published). When the source code
output corresponds to the expected on-chain bytecode, we say it is
“verified”.

We’ve identified that developers on the Sui blockchain1 would
largely benefit from being able to see verified Move source code on-
line. Indeed, existing blockchains have varying support or pending
requests for other languages [3, 6, 7]. However, every smart contract
language poses unique challenges to providing such a service, and
the constraints of a given blockchain and language will impose on
the feasibility, design, and implementation of a system to provide
such verified source code. This paper describes our exploration, im-
plementation, and result of designing a source verification service
for the Move language. While providing immediate value to devel-
opers, we also consider the service to be a fundamental building
block in unlocking greater developer user experience. For example,
source availability in the browser could allow for communicating
software quality signals [11] and code navigation via the Language
Server Protocol [4].

2 MOVE SOURCE VERIFICATION TOOL AND
SERVICE

Overview. The Move Source Verification Service (MSVS) serves
Move source code that has been verified against its on-chain byte-
code representation. The service is powered by a tool implemented
in Rust, comprising:

• a backend server to clone source code, orchestrate verifica-
tion, and serve source code over a REST API.

• a source-to-bytecode verification routine in a standalone
library (Rust crate).

1sui.io

https://doi.org/10.1145/3639478.3640038
https://doi.org/10.1145/3639478.3640038
https://sui.io/

ICSE-Companion ’24, April 14–20, 2024, Lisbon, Portugal Rijnard van Tonder

Figure 1: The pipeline illustrating how we verify smart contract code with MSVS. First, the reference source implementation is
pulled and compiled (1). The expected bytecode for the source is then pulled from the blockchain (2) and compared byte-for-byte
to the compiled source code (3). If the process succeeds, the source is displayed in the Sui Explorer frontend (4).

The implementation is open-source underMIT license.2 Ahosted
version of the tool3 integrates with suiexplorer.com, a web frontend
for exploring Sui blockchain data and code (see Figure 3 for a vi-
sual example). The MSVS implementation is further independently
configurable and runnable (e.g., for developers who want to serve
their own source packages, or run the tool internally), and can be
integratedwith alternative frontends beyond suiexplorer.com. Hard-
ware requirements are generally low, and depends on the scale and
number of source packages hosted. For example, we’ve deployed
and tested the server on a single core machine with less than 512MB
of RAM over a handful of standard Move library packages.

Tool and Service Operation. Figure 1 illustrates the pipeline
for the Move Source Verification Service. The service 3 represents
the tool presented in this paper: a server that orchestrates and im-
plements source verification to enable an end-to-end flow. At start
up, the server clones well-known source repositories containing
Move packages 1 . The set of source repositories are specified in
a configuration file, and target fixed branches in repositories. The
configuration may be modified as needed.4 Source packages are
expected to specify the on-chain address where the bytecode is
published in a Move.toml file. The server uses this address to fetch
the corresponding bytecode from the blockchain 2 . The server
builds the source code for each package and compares the output
byte-for-byte to the expected bytecode found on-chain 3 . If this
comparison succeeds, we say that the source code is verified. The
server will then respond to API requests for source code from a
frontend client (in this case, Sui Explorer) which are rendered to
users in the browser 4 .

Cloning and verification is generally performed concurrently
per repository and package. In its first instantiation, the server
tracks four packages that roughly correspond to standard libraries,5
comprising roughly 18,000 lines of Move code. Verifying these
packages takes around 8 seconds on our hosted service.
2https://github.com/MystenLabs/sui/tree/main/crates/sui-source-validation-service
3API hosted at source.mystenlabs.com
4Click here to see the default configuration file online: configuration file online.
5Find the packages online by clicking here.

The central operation of the service is to effectively keep source
code in lockstep with on-chain bytecode. One additional challenge
in the Sui blockchain (and other blockchains supporting similar
operations) is the notion of smart contract upgrades. On the Sui
blockchain packages may be upgradable6 and our MSVS must ac-
count for such changes to accurately report source. The server
currently implements threads that monitor changes to the fixed
addresses mentioned prior on the Sui blockchain. When a thread
detects an on-chain upgrade (i.e., the bytecode changes on the
blockchain), the corresponding package source code is immediately
invalidated on the server, so that it no longer reports that source
when requested until the new code can be reverified. The server
then pulls the source code again and repeats the verification process,
which typically takes less than 10 seconds.

Note that we do not derive (or decompile) the source code from
the on-chain bytecode. Our service expects a repository containing
a reference implementation to verify against. While decompiling
is an attractive option when source code is unavailable, available
source containing comments and code formatting will remain the
preference of active developers. At present, a high quality decom-
piler for Move code does not yet exist.

3 DEVELOPER EFFORT, USER EXPERIENCE,
AND OPEN QUESTIONS

Increasing Developer Experience with User-facing Changes
The before-and-after of our tool is illustrated by Figures 2 and 3,
and the main outcome of our approach. Previously, we displayed
only the Bytecode tab for modules (shown left). The Bytecode rep-
resentation shows flat addresses when referencing other modules
(e.g., 0x00..001:ascii). The corresponding Source representation
in Figure 3 reveals the namespaces and provides greater clarity (e.g.,
std::ascii instead). The source also reveals essential constants
(which may be inlined during compilation) and documentation for
types and functions. Users can now largely benefit from source code

6https://docs.sui.io/build/package-upgrades

https://suiexplorer.com
https://suiexplorer.com
https://github.com/MystenLabs/sui/tree/main/crates/sui-source-validation-service
source.mystenlabs.com
https://github.com/MystenLabs/sui/blob/main/crates/sui-source-validation-service/config.toml
https://github.com/MystenLabs/sui/tree/main/crates/sui-framework/packages
https://docs.sui.io/build/package-upgrades

Verifying and Displaying Move Smart Contract Source Code for the Sui Blockchain ICSE-Companion ’24, April 14–20, 2024, Lisbon, Portugal

Figure 2: The bytecode representation of a Move smart contract on suiexplorer.com (cf. Move source code in Figure 3).

Figure 3: The source representation of the Move contract shown in Figure 2.

ICSE-Companion ’24, April 14–20, 2024, Lisbon, Portugal Rijnard van Tonder

availability, and in time, we are eager to build out additional fea-
tures such as code navigation (jumpt-to-definition, find-references)
uniquely for smart contracts in the browser.

Design of Planned Studies to Identify Developer Experi-
ence and Friction. At the time of writing, our MSVS is on the
cusp of being put into production, and is not yet a mature tool. Our
primary research question is grounded in practice and industrial ap-
plication: Is it feasible to design and build a service that ensures the
fidelity of smart contract source code for the Move language? What
does a successful implementation entail, and does it meet the needs
of developers? Prior launched blockchains have demonstrated vari-
ous complexities that arise, and the possibility of forfeiting such a
concept [3]. We have found that the exploration and design of an
effective smart contract verification is not merely an engineering
exercise, and will continue to entail unknown complexities. For
example, we are currently evaluating how to support divergent
compilers that may emit different bytecodes, further complicating
the source verification process. Our main contribution with our
tool is thus a demonstration of the feasibility and implementation
of a system that overcomes these initial challenges for the Move
language.

Upon launch, we plan to largely evaluate quantitative metrics
around this service (how often active users consult the source
code in the browser out of all visitors) and build out new features
that specifically require trusted source code to be available. For
example, we are interested in evaluating and surfacing software
quality metrics [8–10, 12]) to help give users the signals they need to
trust a given smart contract. One practical example shows that the
presence of repository badges can help to assess quality assurance
in open source software [11]. Likewise, we seek corresponding
signals, such as badges, to display alongside smart contract source
to surface software quality signals. Our MSVS is the basic building
block to unlock these studies and better understand the unique
needs of Move smart contract developers.

4 RELATEDWORK
Blockchains and supported smart contract languages exist in var-
ious flavors [1, 2, 5], and all impose unique constraints and chal-
lenges in their respective developer ecosystems. The Sui blockchain
is no different, and in general the approach and implementation
of our Move Source Verification Service address these uniquely
and in new ways, particularly with respect to: (1) smart contract
bytecode representation, and the ability to compare locally com-
piled bytecode to on-chain bytecode; (2) accounting for source
changes in the presence of our unique package upgrade process;7
and (3) identifying challenges and striving for solutions that cause
developer friction for the Move language. At a more general level,
existing work in practice identifies the importance of linking to
source repositories, for example, the Anchor Program Registry on
the Solana blockchain [7]. On Ethereum, etherscan supports ren-
dering source code for, e.g., the Solidity language [6]. The Tezos
issue tracker contains an open feature request for verifying source
code similar to the approach we’ve implemented [3]. Overall, in the
state of practice, most blockchain languages benefit from some level

7https://docs.sui.io/build/package-upgrades

of source code discovery and verification to benefit their developer
ecosystem.

5 CONCLUSION
Enhancing developer productivity and ergonomics in the area
of smart contracts reveals a growing need for developers to eas-
ily access and understand source code they can trust. We identi-
fied unique requirements to enable source code views for the Sui
blockchain and implemented MSVS to meet those. We described
its implementation and operation as an essential building block for
the developer ecosystem. We anticipate that usage and subsequent
expansion of source-adjacent features (like quality indicators and
editor-like jump-to-definition functionality) will reveal ongoing
needs to sharpen developer tools for smart contracts.

ACKNOWLEDGMENTS
The author would like to acknowledge Ashok, Jk, and the engi-
neering team generally at Mysten Labs for help and support of this
work.

REFERENCES
[1] 2023. Discover the languages of Tezos. https://tezos.com/developers/languages.

Online; accessed 24 October 2023.
[2] 2023. Ethereum Smart Contract Languages. https://ethereum.org/en/developers

/docs/smart-contracts/languages. Online; accessed 24 October 2023.
[3] 2023. Feature Request: Possibility to Verify Source For Tezos Smart Contracts.

https://gitlab.com/tezos/tezos/-/issues/4491. Online; accessed 24 October 2023.
[4] 2023. Language Server Protocol. https://microsoft.github.io/language-server-

protocol. Online; accessed 24 October 2023.
[5] 2023. Solana Rust Program Quickstart. https://docs.solana.com/getstarted/rust.

Online; accessed 24 October 2023.
[6] 2023. Solidity Verified Contract. https://etherscan.io/token/0x0AaCfbeC6a2475

6c20D41914F2caba817C0d8521#code. Online; accessed 24 October 2023.
[7] 2023. What is Anchor and the Anchor Program Registry? https://www.alchemy.

com/overviews/solana-anchor. Online; accessed 24 October 2023.
[8] Allan J. Albrecht and John E. Gaffney Jr. 1983. Software Function, Source Lines

of Code, and Development Effort Prediction: A Software Science Validation. IEEE
Trans. Software Eng. 9, 6 (1983), 639–648.

[9] Eirini Kalliamvakou, Daniela E. Damian, Kelly Blincoe, Leif Singer, and Daniel M.
Germán. 2015. Open Source-Style Collaborative Development Practices in Com-
mercial Projects Using GitHub. In International Conference on Software Engineer-
ing (ICSE ’15). 574–585.

[10] Sandra Slaughter, Donald E. Harter, and Mayuram S. Krishnan. 1998. Evaluating
the Cost of Software Quality. Commun. ACM 41, 8 (1998), 67–73.

[11] Asher Trockman, Shurui Zhou, Christian Kästner, and Bogdan Vasilescu. 2018.
Adding sparkle to social coding: an empirical study of repository badges in the
npm ecosystem. In International Conference on Software Engineering (ICSE). ACM,
511–522.

[12] StefanWagner, Klaus Lochmann, Lars Heinemann, Michael Kläs, Adam Trendow-
icz, Reinhold Plösch, Andreas Seidl, Andreas Goeb, and Jonathan Streit. 2012. The
Quamoco product quality modelling and assessment approach. In International
Conference on Software Engineering (ICSE ’12). 1133–1142.

https://docs.sui.io/build/package-upgrades
 https://tezos.com/developers/languages
 https://ethereum.org/en/developers/docs/smart-contracts/languages
 https://ethereum.org/en/developers/docs/smart-contracts/languages
 https://gitlab.com/tezos/tezos/-/issues/4491
 https://microsoft.github.io/language-server-protocol
 https://microsoft.github.io/language-server-protocol
 https://docs.solana.com/getstarted/rust
 https://etherscan.io/token/0x0AaCfbeC6a24756c20D41914F2caba817C0d8521#code
 https://etherscan.io/token/0x0AaCfbeC6a24756c20D41914F2caba817C0d8521#code
 https://www.alchemy.com/overviews/solana-anchor
 https://www.alchemy.com/overviews/solana-anchor

	Abstract
	1 Introduction
	2 Move Source Verification Tool and Service
	3 Developer Effort, User Experience, and Open Questions
	4 Related Work
	5 Conclusion
	References

