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Abstract
Software bugs are not going away. Millions of dollars and thousands of

developer-hours are spent finding bugs, debugging the root cause, writing a patch,
and reviewing fixes. Automated techniques like static analysis and dynamic
fuzz testing have a proven track record for cutting costs and improving software
quality. More recently, advances in automated program repair have matured
and see nascent adoption in industry. Despite the value of these approaches,
automated techniques do not come for free: they must approximate, both
theoretically and in the interest of practicality. For example, static analyzers
suffer false positives, and automatically produced patches may be insufficiently
precise to fix a bug. Such limitations continue to impose substantial human
effort amid the benefits of automation.

Software development activities revolve around changing code. Thus, per-
forming and reasoning about program change has extensive bearing on the
effectiveness of automated techniques. From this perspective, we develop new
automated techniques for changing programs to improve analysis behavior, and,
correspondingly, use automated reasoning and analysis to specialize program
changes for automated program repair. We present the first evidence that
automated program transformation, program analysis, and program repair are
interrelated and cooperative. We first show that automated program transfor-
mation leads to higher quality static analysis (by reducing false positives) and
dynamic fuzz testing (by reducing duplicate bug reports). We then show how
high-quality static analyses can feed into and enable automated program repair,
and how automated repair can circle back to further improve static analysis
(e.g., by revealing more true positive bugs). The thesis is that automated syn-
tactic and semantic search and application of program transformations enables
efficient, scalable, and unassisted techniques for improving the effectiveness of
existing program analyses and end-to-end repair of real-world programs.

We show that these techniques are effective compared to current approaches
in the respective domains of static analysis, dynamic fuzz testing, and program
repair. We demonstrate relevance and real-world applicability by evaluating
on large, popular, and active projects across multiple languages. Our vision
for this work is that new capabilities and techniques for automated program
transformation foster effective ways to automate burdensome human effort and
reasoning incurred by limitations in program analysis and repair.
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Chapter 1

Introduction

Software bugs are not going away. Millions of dollars and thousands of developer-hours are

spent finding bugs, debugging the root cause, writing a patch, and reviewing fixes [56, 167].

Automated tools such as linters, static analyzers, and fuzzers help drive down the costs by

catching bugs early and increase developer efficiency [43, 47, 61, 83]. Recent techniques

in automatic program repair [106, 136, 158] seek to further cut costs by automatically

and correctly fixing bugs. Yet automated techniques do not come for free; they must

approximate, both theoretically [83, 129, 142] and in the interest of practicality [61, 68, 104].

For example, static analyzers suffer false positives [172], and automatically produced patches

may be insufficiently precise to fix a bug [190]. Such limitations impose substantial human

effort and reasoning to realize benefit (e.g., a developer needs to discern true versus false

positive bug reports, or judge the correctness of a patch). Thus, despite the proven value

of automated techniques for improving software quality [61, 83, 151, 186], abstraction

tradeoffs in automated reasoning, design, and implementation lead to imprecision that

incurs significant manual effort, hindering broad adoption and utility [67].

Developing and maintaining software centers around a core activity: making changes to

programs [149]. Software development is a complex and dynamic process owing to the fact

that programs are highly subject to change due to bug fixes, refactoring, new features, or

3



changes in the underlying language syntax or runtime [123, 161, 192]. Automated techniques

for manipulating, analyzing, and repairing programs offer efficient means (i.e., compared to

manual human effort) for developing and assuring software quality particularly as programs

change [61, 83]. Program changes in turn affect the applicability, correctness, or behavior

of refactoring tools, analyzers, and autofix tools. Performing and reasoning about program

change thus has extensive bearing on the effectiveness of automated techniques. Where

predominantly manual effort intervenes to overcome limitations in automated techniques

(e.g., filtering false positives or fixing bugs) we ask: How might better techniques for

automatically performing and reasoning about program changes improve the effectiveness

of automated techniques for ensuring software quality? This dissertation investigates

interrelated problem domains where limitations in automated techniques give way to

manual effort, and shows that automated program transformation can address them in new

and effective ways.

We first consider static analyzers. While effective, static analyzers routinely report false

positive bugs. Causes range from imprecision in the analysis [68] to semantic differences

across different language runtime versions. Existing mechanisms for suppressing warnings

prove insufficiently granular [67, 116]. Interestingly, developers instinctively recognize that

they can change their programs in small ways to remove false positives.1 This alternative

is however manual and ad hoc. In general, the inability to easily and selectively perform

non-trivial program transformations, automatically at scale, diminishes the benefits that

could hypothetically be derived through generic and broad application.

This observation bears on a second open problem domain: performing precise crash

triaging. Large scale dynamic fuzz testing can report hundreds of unique crash reports that

correspond to the same bug, even after using deduplication heuristics [66, 76]. Like false

positive bug reports, duplicate fuzzer reports can incur considerable human effort to filter.

Humans predominantly debug crash-inducing behavior to ultimately produce a fix (i.e., a

1See, e.g., https://github.com/phpstan/phpstan/issues/1739#issuecomment-450582305

4
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program change that positively alters behavior). This process suggests the possibility of

automatically applying program transformations to silence or suppress inputs that otherwise

produce duplicate bug reports in current techniques.

Third and finally, automatic program repair seeks to actually fix bugs. To become

mainstream, automated program repair must produce semantically correct patches that

can be trusted for automatic application. The vast majority of automated program repair

research relies on existing tests to identify bugs, validate fixes, or both [120, 135, 135, 145,

146, 154, 164, 177, 211]. One fundamental limitation of tests is that they are limited to

testing known functionality of programs, and hence cannot be used to fix newly discovered

bugs automatically. To truly propel real-world adoption, automated program repair must

expand to bugs discovered by automated techniques like static analysis and fuzzing. Static

analysis and verification provides automated reasoning for bug-finding, yet automated

program repair research based on analysis tooling remains underexplored with limited

practical applicability to real-world software [115, 126, 202]. Recent advances deliver high

quality analysis techniques and tools to cost effectively find real bugs [61]. This enables the

exploration of (a) efficient semantic-driven search and application of program transformation

and (b) approaches that provide high confidence in patch correctness by validating changes

with respect to the semantic analysis domain.

The problem domains we consider in this dissertation (concretely, static analysis, dynamic

fuzz testing, and program repair) are generally pursued separately in the literature.2 In

this dissertation we principally show that new combinations of automated reasoning and

program transformation can broadly improve the effectiveness of techniques in these domains

respectively. Further, our solutions present the first empirical evidence of another key insight:

automated program transformation across these domains also create cooperative solutions,

as these domains are interrelated. At a high level, we achieve an effective automated

2As are related, but distinct areas in verification, symbolic execution, testing, and so on, which we do
not consider deeply.
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program repair technique by building on top of a static analysis. Thus, improving the

static analysis (in our case, via program transformation) can yield an enhanced automated

program repair procedure. In the other direction, automated program repair techniques

offer the auxiliary ability (i.e., beyond fixing bugs) to also amplify the effectiveness of static

analysis (by uncovering more true positive bugs) and dynamic fuzz testing (by providing

an oracle to distinguish unique crashing inputs).

In short, we pose that specializing automated program transformation presents new and

effective ways to improve automated reasoning and analysis (1), and correspondingly, that

using automated reasoning and analysis to specialize automated program transformation

enables new and effective ways to achieve automated program repair (2). Concretely, we

pursue open problem domains in (1) to reduce false positives reported by static analyzers and

duplicate bug reports by dynamic fuzzers, and automated repair of automatically discovered

bugs in (2). We consider that our solutions across these domains have a cooperate effect.

In the one direction, removing false positives can improve the effectiveness of automated

program repair. In the other, automated program repair can amplify the effectiveness of

static analysis and dynamic fuzz testing. Our solutions entail both syntactic and seman-

tic reasoning to drive program transformations, which we apply to real-world software. Thus:

The thesis is that automated syntactic and semantic search and application of program

transformations enables efficient, scalable, and unassisted techniques for improving the

effectiveness of existing program analyses and end-to-end repair of real-world programs.

We document the invention, design, and implementation of automated techniques that

improve existing analyses in static and dynamic settings, as well as the first unassisted,

end-to-end automated program repair system for multiple bug classes, and demonstrate

their effectiveness on real programs. Section 1.1 gives a brief description of the techniques

that substantiate the thesis, their scope, and criteria for success. Section 1.2 summarizes
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our contributions, and Section 1.3 outlines the rest of the dissertation.

1.1 Scope and Success Criteria

The techniques in this dissertation emphasize applicability to modern real-world programs.

We evaluate techniques on actively used software and tooling for multiple languages. All

techniques are shown to scale to large software projects (>100KLOC). We demonstrate

new applications of automated program transformation to problem domains that have not

been attempted before. We thus characterize efficiency and effectiveness with respect to

these domains for each application in the following sections. All techniques run unassisted,

meaning no human-in-the-loop is required for an automated procedure to complete. An

unassisted process does not preclude up-front manual effort (e.g., defining templates that

rewrite program fragments), which is generally required to initiate the automated procedures

in our work. While up-front effort is manual, our requirements are lightweight and serve an

important role in allowing developers to configure and parameterize automated program

transformation and reasoning. Developers are sensitive to whether tools can integrate

into existing workflows [116]. Our techniques accomodate this view by allowing domain

experts to integrate specialist knowledge in targeted transformations and automated actions.

Section 6 elaborates on further work to automate inference of up-front specifications.

1.1.1 Lightweight Declarative Syntax Transformation

The ability to easily and automatically change programs lies on the critical path to efficiently

improving software using program transformation. Current solutions for changing programs

generally requires interfacing with complex, language-specific abstract syntax tree (AST)

frameworks that fail to generalize across multiple languages in cases where we simply want

to make small syntactic changes. Notably, while our repair technique (Chapter 5) was not

purely based on syntactic changes, we found that manipulating syntax (as motivated by
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underlying semantic reasoning) presented a limiting factor to performing changes. This

problem was exacerbated in attempts to tailor programs for analyses.

Our solution is a declarative approach to syntax transformation for multiple languages.

The goal in supporting multiple languages is to enable subsequent approaches in analysis

tailoring and repair to generalize in a language-agnostic ways. Transformation across

multiple languages is hard due to heterogeneous representations in syntax, parse trees,

and abstract syntax trees. Our approach decomposes this problem to a common grammar

expressing central context-free language properties shared by modern languages (e.g.,

balanced parentheses), while using smaller parsers to handle syntactic differences across

languages (e.g., comments). We operationalize this decomposition using a parser-generating

parser using parser combinators. We call such a parser a Parser Parser Combinator, which

generates parsers for matching syntactic fragments in source code by parsing declarative

user-supplied templates. Modulo up-front specification of templates for matching and

rewriting programs, the procedure runs unassisted. We show that our approach meets

efficiency and scalability criteria, in addition to generality: program transformation is

comparatively fast (i.e., efficient) compared to language-specific tooling, effective across

12 languages, and scales to hundreds of millions of lines of code. This approach enables a

fundamental primitive for efficient, scalable, and unassisted syntactic search and application

of program transformations.

1.1.2 Tailoring Programs for Static Analysis

Static analysis is a proven technique for ensuring software quality, but tools approximate in

the interest of theoretical and practical limits. False positives are a pervading manifestation

of such approximations. To suppress false positives, developers readily disable bug checks

or insert comments that suppress spurious bug reports. Existing work shows that these

mechanisms fall short of developer needs and present a significant pain point for using or
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adopting analyses [67].

Our solution applies targeted program transformations to code patterns that induce

false positives. We implement our solution using declarative templates (as in Section 1.1.1).

We make the observation that analysis users have little agency over the format of analysis

configuration options provided to them, but that program transformation offers a fresh

primitive for leveraging influence over analysis behavior.

The underlying hypothesis is that rule-based application of program transformations

can improve the effectiveness static analysis by reducing false positive bug reports. The

notion that syntactic transformations abstract semantic transformations [75] underpins our

intuition that manipulating syntax can achieve desirable changes in the analysis domain

and implementation.

A key objective of our work is to demonstrate the broad feasibility and effectiveness

of these ideas for the first time in practice. To be feasible, program tailoring must be

efficient compared to running the analysis. To be effective, it must improve analysis reports:

i.e., remove bona fide false positives without adversely affecting results otherwise. We

demonstrate this efficiency and effectiveness across multiple analyzers (e.g., Clang, SpotBugs,

and PHPStan) and languages (C, Java, and PHP). Further, we show that our technique

can be used at scale to even automatically detect and remedy false positive patterns before

they are surfaced by an analyzer.

1.1.3 Tailoring Programs under Dynamic Fuzz Testing

Precise crash triage is important for automated dynamic testing tools, like fuzzers. At scale,

fuzzers produce millions of crashing inputs. Fuzzers use heuristics, like stack hashes, to

cut down on duplicate bug reports. These heuristics are fast, but often imprecise: even

after deduplication, hundreds of uniquely reported crashes can still correspond to the same

bug [66, 78]. Remaining crashes must be inspected manually, incurring considerable effort.
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Analogous to our solution for false positives in static analyzers, we design a generic

method for precise crash bucketing using program transformation. We call this method

Semantic Crash Bucketing, which maps crashing inputs to unique bugs as a function of

changing a program (i.e., a semantic delta). We observe that a real bug fix precisely

identifies crashes belonging to the same bug. The insight is to approximate real bug fixes

with lightweight program transformation to obtain the same level of precision.

The underlying hypothesis is that rule-based application of program transformations

can improve fuzzing by reducing the number of duplicate bug reports compared to existing

techniques. As in Section 1.1.2, syntactic patch templates effect favorable semantic changes

toward our goal of reducing duplicate crash reports. To better approximate a fix in this

dynamic setting, we additionally incorporate semantic feedback from program execution

traces to inform patching.

As in Section 1.1.2, our approach must be efficient and effective compared to existing

approaches, but now in the domain of fuzz testing and crash deduplication. We show

that patch generation and deduplication is fast (on the order of tens of seconds) up to

very large programs. We demonstrate effectiveness by showing that approximate fixes are

competitive with ground truth fixes for crash deduplication, and significantly outperforms

built-in deduplication techniques for three state-of-the-art fuzzers.

1.1.4 Augmenting Static Analysis for Automated Program Repair

Static analysis tools have demonstrated effectiveness at finding bugs in real-world code.

Automatic Program Repair has the potential to further cut costs by automatically fixing

bugs. Moreover, real bug fixes also deliver new ways to positively influence analysis

behavior, as in Section 1.1.3. However, there is a disconnect between effective bug-finding

tools and the ability to then fix bugs with Automated Program Repair (APR). Recent APR

advances largely rely on test cases [120, 135, 135, 145, 146, 154, 164, 177, 211], making
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them inapplicable for fixing newly discovered bugs found by analyzers.

Our solution adapts advances in practical static analysis and verification techniques

to enable a new technique that finds and then accurately fixes real bugs without tests.

To guard against patch overfitting [190], we build on an underlying semantic domain

(using separation logic) to inform program transformation. At a high level, our technique

reasons over semantic effects of existing program fragments to fix faults related to general

pointer safety properties: resource leaks, memory leaks, and null dereferences. Thus, like

Section 1.1.3, we use an appropriate semantic basis to drive automated patching (in this

case, afforded by a static analysis). In the setting of automated program repair, this work

focuses on producing real bug fixes, including ones for previously undiscovered bugs. Our

approach uses the static analyzer’s reasoning to provide a correctness criterion in lieu of

tests: bug fixes correct the residual error state detected in the separation logic domain. The

underlying hypothesis is that static analysis using the domain of separation logic enables

rule-based semantic search and application of program transformations to fix real-world

programs.

We implement our approach in a tool called FootPatch, an extension of the Infer static

analyzer [5], to enable an end-to-end approach for detecting and fixing bugs. FootPatch

is efficient, and can generate fixes for large programs (>100KLOC) in under 5 minutes.

We show that FootPatch is effective: it generates correct patches in multiple languages

(C and Java) for previously-unknown bugs, which have been merged upstream into highly

popular projects. We also show anecdotal evidence that fixing bugs allows the static analysis

to subsequently discover more true positive bugs.

1.2 Contributions

The main contributions of this dissertation are as follows.

1. A new technique for declaratively and selectively performing program transformations
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(Chapter 2). We formulate a modular syntax rewriting technique that generalizes to

multiple languages and scales to hundreds of millions of lines of code.

2. A new technique introducing the idea of tailoring programs for static analysis using

program transformation (Chapter 3). We use declarative templates from (1) to

enable a new mechanism that detects and suppresses false positives introduced by

long-standing, unaddressed, and complex issues in actively used analyzers.

3. A new technique for tailoring programs under dynamic fuzz testing using program

transformation (Chapter 4). We develop a generic technique for precisely deduplicating

crash reports as a function of changing a program (i.e., a semantic delta). Our approach

outperforms built-in deduplication techniques for state-of-the-art fuzzers.

4. An automatic program repair technique that uses separation logic and static analysis

to drive program transformations that fully fix real-world bugs (Chapter 5). Our

approach produced patches that are merged into active upstream projects, marking

an important milestone in end-to-end repair by correctly and automatically fixing

previously undiscovered bugs.

The contributions of this dissertation emphasize real-world applicability to existing

programs and software quality assurance techniques. The following is a high level summary

of the empirical contributions corresponding to the above, in substantiating the validity of

our claims.

• Efficient and general syntactic program transformation, evaluated on the 100 most

popular GitHub projects for each of 12 different languages, comprising 282 million

lines of code. Our approach has led to more than 50 automatically produced patches

that have been merged into over 40 of the most popular open source projects on

GitHub, including the Rust compiler.3

• An evaluation on five actively used static analyzers for three different languages
3Broadly, we produce syntactic changes that improve code readability, style, and performance.
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(C, Java, PHP). We show a reduction of 126 false positive reports across 15 large

real-world projects (including OpenSSL, 400KLOC in size) for nine different bug

classes using tailored program transformation.

• A comparative evaluation of our crash bucketing approach and five other crash

deduplication strategies implemented in three state-of-the-art fuzzers. We evaluate

on crash reports related to 21 real-world bugs (belonging to two bug classes: null

dereferences and buffer overflows) in six large projects, including the PHP interpreter

and SQLite. We show that our approach, using program transformation, can detect

tens to hundreds of duplicate crashing inputs where fuzzer techniques cannot.

• Automatic patch generation for semantic bug fixing. We generate 55 total bug fixes

using our program repair approach across 11 large projects for three bug classes (null

dereferences, resource leaks, and memory leaks) across two languages (C and Java).

Six of our fixes are merged upstream into popular C and Java projects.

1.3 Outline

Chapter 2 introduces our technique for declaratively rewriting programs. All subsequent

work in Chapters 3, 4, and 5 use this technique in some capacity. Chapter 3 describes

program tailoring via transformation for static analysis. Chapter 4 transitions to program

tailoring in a dynamic setting (i.e., fuzz testing), where the objective focuses on deduplicating

runtime crash reports. Chapter 5 explains our approach augmenting an existing bug-finding

analysis to inform end-to-end program repair. Since our work in program transformation

cuts across orthogonal objectives in static analysis, dynamic testing, and program repair, we

discuss related work of existing techniques separately at the end of each respective chapter.

Chapter 6 discusses future work and concludes.
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Chapter 2

Lightweight Declarative Syntax

Transformation

This chapter presents a new technique for declaratively manipulating program syntax. The

motivation is that program transformation primitives enable new and effective ways for

improving software (e.g., via refactoring and automated program repair). To harness this

potential at scale, we need simple, efficient, and general ways of performing selective and

automated program transformation. Generalizing to multiple language is especially hard

due to heterogeneous representations in syntax, parse trees, and abstract syntax trees. This

chapter presents a new technique and tool that achieves these goals: efficient, declarative

syntax manipulation that generalizes to multiple languages. We demonstrate these ideas

across 12 languages, and validate effectiveness of our approach by producing correct and

desirable lightweight transformations on popular real-world projects. The capabilities of

this technique are used in some capacity in all subsequent chapters.

15



2.1 Introduction

Automatically transforming programs is hard, yet critical for automated program refac-

toring [26, 29, 155], rewriting [20, 150], and repair [121, 145, 191, 197]. The complexity

of automatically transforming code has yielded a plethora of approaches and tools that

strike different design points in expressivity, language-specificity, interfaces, and sophis-

tication [26, 27, 31, 110, 150]. At one end of the spectrum, techniques based on regular

expressions, like sed or codemod [27], perform simple textual substitutions. On the other,

language-specific AST visitor frameworks, like clang-reformat, manipulate rich program

structures and metadata. Unfortunately, many lightweight transformations that should

apply to multiple languages are entangled in language-specific tools with complex interfaces,

relying on a program’s AST to work. For example, consider a simple list slicing “quick fix”:

both Python and Go can be simplified from α[β:len(α)] to α[β:] for a list assigned to

variable α and sliced from initial index β. Visually, the transformation is lightweight and

easy to describe. Unfortunately, actually performing this type of transformation generally

boils down to separate implementations depending on language-specific ASTs.

We observe that a wide range of lightweight transformations rely on matching tokens

structurally within well-formed delimiters (essential syntax exhibiting a context-free property,

and common to virtually all languages [28, 29, 31, 34, 37, 38]).1 We propose an approach that

exploits this observation to enable short (yet nontrivial) rewrite specifications that elide the

need for complex, language-specific implementations, syntax definitions, or translations from

metasyntax to an underlying abstract representation. We introduce a modular grammar

that can be modified based on syntactic differences in languages (e.g., comment syntax),

but which preserves the quintessential property of context-free languages. Our grammar

extends Dyck languages [53], which capture the CFL constructs of interest in conventional

1Note that valid programs in many languages exhibit additional context-sensitive language features (e.g.,
parsing valid type definitions and their uses in C). Our approach does not attempt to parse strictly valid
programs for a language, but rather provides sufficient expressivity to parse context-free properties found
in language syntax.
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programming languages. We develop a Dyck-Extended Language (DEL) grammar that can

interpolate tokens (i.e., regular strings) between and inside balanced delimiters as a base

representation for syntactic manipulation.

The crux of our approach implements a parser generator for a DEL; the generated

parser matches concrete syntax of interest, enabling rewriting. Importantly, the parser

generator is modular (reflecting the fact that DEL grammars are modularly defined), which

we implement using parser combinators. We refer to our modular parser generators as

“Parser Parser Combinators”, or PPCs. Thus, the parser generator contains open extension

points where smaller parsers handle language specific syntax (e.g., custom delimiters and

comment syntax) in the generated match parser it produces.

The first advantage of using PPCs is that our approach does not rely on any source

code translation at all. It instead detaches from representing input programs with any

particular abstract syntax tree representation: the original source input is our concrete

representation, and matching syntax relies only on how a parser interprets that input.

Traditional approaches rely on first parsing syntax into a tree representation which is then

manipulated. By contrast, our approach embeds the structural properties of syntax in the

generated parsers alone; the parser records only matching syntax during parsing. PPCs

enable easy multi-language extension for varying syntax across languages by exposing hooks

for smaller parsers in a skeleton parser. Extending the parser to language-specific syntax

(e.g., for comments) in the parsing routine is comparatively easy in our architecture as

compared to modifying concrete AST definitions in code.

The second advantage of PPCs is that they interpret user-specified match templates

as parser generators for a DEL. Small, custom syntactic parsers embed into the PPC to

parameterize both how user-supplied templates are interpreted, and the parsers that those

templates produce. The effect is that we avoid the complexity of implementing an additional

translation layer from user-supplied metasyntax to an abstract syntax representation; the

same custom syntax definitions embed seamlessly into the parser for user-supplied templates
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and the match procedure (a parser) produced from it. The result is rewrite templates that

are syntactically close to the target patterns with minimal metasyntax.

The main contributions of this chapter are:

• The Dyck-Extended Language representation, defined by a modular grammar for

accommodating syntactic idiosyncrasies and ambiguity across multiple languages. We

operationalize extensible DEL grammars using:

• Parser Parser Combinators for performing lightweight syntactic rewriting. PPCs

enable an extensible parser-generating procedure that operates directly on source

code without the need for an intermediate data structure. This enables:

• Declarative specification of rewrite templates (syntactically close to the target syntax)

that are interpreted as parser definitions, eliding the need for additional translation

layers converting the user-facing templates to an underlying representation and

vice-versa.

• A large-scale empirical evaluation to demonstrate the effectiveness of our lightweight

approach.

The evaluation aligns with the goals of the thesis: to present a new way of enabling

efficient syntax matching and transformation that scales generally across multiple languages

and large programs. These attributes further enable efficient automated techniques in

subsequent chapters.

We thus evaluate our approach on 12 languages comprising 185 million lines of code

using 30 transformations. We ran our transformations on the 100 most popular GitHub2

repositories for each language. By targeting actively developed projects, we had the

opportunity to submit our changes upstream; our approach has produced over 50 syntactic

changes that are merged into over 40 of the most popular open source projects on GitHub.

Merged changes reflect an important additional validation that our transformation engine

2In October, 2018.
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produces correct and desirable syntactic changes. We also compare our multi-language

approach to nine checkers and rewriters for individual languages. We demonstrate declarative

specifications (typically less than 10 lines each) for existing real-world transformations that

otherwise require tens of lines of implemented in different languages in current real-world

tools.

The tool and rewrite specifications are available online3 as well as 100 real-world example

transformations produced by our work.4

2.2 Motivating Example

The staticcheck5 tool for Go detects buggy and redundant code patterns. Like many

language style guides, it provides a practical description of “do X instead of Y” for code.

An example from the documentation explains:

You can use range on nil slices and maps , the loop will simply

never execute. This makes an additional nil check around the

loop unnecessary.

Regular expressions cannot generally recognize patterns like the nil-check simplifica-

tion at the top of Figure 2.1. The traditional solution is to write a checker that visits

the program’s AST to recognize the pattern. Checker mechanics are hidden in an imple-

mentation, diverging from Figure 2.1’s intuitive, syntactic before/after description. This

programmatic implementation disconnects the checker code from the pattern, making it

harder to understand and modify.

In our declarative approach, the user instead specifies a match-and-rewrite pattern that

closely resembles and is as natural as the syntactic description. The match template for

nil-check pattern is shown at the bottom of Figure 2.1. The syntax :[identifier] denote
3https://github.com/comby-tools/comby
4https://github.com/squaresLab/pldi-artifact-2019/blob/master/PullRequests.md
5https://staticcheck.io/docs/#overview
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Before� �
if s != nil {
for _, x := range s {

...
}

}� �

After� �
for _, x := range s {

...
}� �

Match template� �
if :[var] != nil {
for :[_] := range :[var] {

:[body]
}

}� �

Rewrite template� �
for :[_] := range :[var] {

:[body]
}� �

Figure 2.1: Top: A textual description for simplifying a nil check Go code, taken from the Go
staticcheck tool. Bottom: Our match template and rewrite templates for the nil-check pattern
above.

holes with the name identifier. Every instance where the template matches source code

produces an environment. An environment binds variables to string values (corresponding

to syntax) in the source code. The identifier _ acts as an ordinary identifier where we don’t

particularly care to name the variable. Multiple occurrences of a variable in a template

(like var) imply that matched values must be equal for matching to succeed.

The match template is expressive enough to match the syntactic structure of the general

pattern in Figure 2.1. Three core ideas make this possible:

1. The built-in understanding that delimiters {...} in the match template denote well-

balanced (and possibly nested) syntax that must correspond to delimited syntax in

the source.

2. Any syntax besides balanced delimiters and holes in the template (e.g., non-whitespace

tokens like if, !=, range) correspond to concrete syntax in the source. Whitespace in

the template is interpreted as a regular expression matching one or more consecutive

whitespace characters.

3. Match rules govern whether the match succeeds. Rules act as additional constraints

on values in the environment (e.g., we check that matches of :[var] are equal).
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Section 2.4 explains the matching approach in detail. After the matching phase, we

can use a rewrite template to perform a change to the program. A rewrite template takes

as input an environment, and substitutes variables for values. Our rewrite template for

nil-check is also declarative (see Figure 2.1).

The match and rewrite templates are the only inputs needed to detect and rewrite

instances of nil-check. Figure 2.2a is a real-world example where we applied our nil-check

rewrite specification, producing the simplified code as-is in Figure 2.2b.6 The rewrite is

nontrivial: one match is contained inside another. Importantly, each instance matched by

the template (which may be nested or occur in sequence) produces an environment to be

instantiated using the rewrite template at that location. In this sense, our match-and-rewrite

approach mimics traditional recursive, visitor-like tree traversals without a need for an

actual AST visitor.

Indeed, presently, despite the fact that nothing about this approach is Go-specific,

implementing the nil-check specification invariably requires creating or interfacing with a

Go-specific tool operating on a parsed AST. One approach to multi-language support is

an intermediate representation (e.g., srcML [150]), but this requires a translation layer and

remains a programmatic approach. In language-specific approaches, tool design is dictated

by the language’s AST. This precludes, for example, the use of a general visitor framework

for both Python and Go. This may be unavoidable due to language-specific features and tool

application. However, for general syntactic transformations like Figure 2.1, our approach

avoids repeated implementation effort across different languages. Moreover, interfacing with

the AST is programmatic in language-specific AST visitor frameworks. Similarly, language

workbenches supporting transformation for multiple languages (e.g., [55, 125]) generally

define an AST representation per language with particular sensitivity for matching program

terms. In this design, making transformation declaratively accessible requires an additional

6This code was merged into a popular Go repository: https://github.com/sourcegraph/
go-langserver/pull/324. We did reindent the code using gofmt so that it conforms to stylistic conventions.
Reformatting is not always necessary.
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� �
func (c *SymbolCollector) addContainer (...) {

if fields.List != nil {
for _, field := range fields.List {

if field.Names != nil {
for _, fieldName := range field.Names {

c.addSymbol(field , fieldName.Name)
}

}
}

}
...

}� �
(a) Highlighted lines 2 and 4 contain redundant nil checks in Go
code: iterating over a container in a for loop implies it is non-nil.� �
func (c *SymbolCollector) addContainer (...) {

for _, field := range fields.List {
for _, fieldName := range field.Names {

c.addSymbol(field , fieldName.Name)
}

}
...

}� �
(b) Rewrite output simplifying the Go code above.

Figure 2.2: Redundant code pattern and simplification.

translation layer from a surface syntax mapping to terms (e.g., [201]). In general, the

specificity of terms in AST definitions determines the granularity at which such terms can

be matched using generic tree matching procedures. This specificity (which can result in

definitions spanning hundreds of lines)7 can increase the complexity of the surface syntax

for complex transformations (e.g., when disambiguating syntax [119]). By contrast, we

propose a particularly coarse representation for lightweight transformations that is loose

with respect to matching and rewriting specific terms. Our declarative transformation

approach notably skirts the issue of defining a concrete representation for manipulating

code (like ASTs) or defining additional translation layers (e.g., [201]) by creating on-demand

7See, e.g., https://github.com/usethesource/rascal/blob/master/src/org/rascalmpl/library/
lang/java/syntax/Java18.rsc
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parsers that match syntax of interest. The foundation of this idea lies in first identifying a

suitable grammar for expressing syntax of multiple languages, discussed next.

2.3 Dyck-Extended Languages

We use the Dyck language as an initial building block to form a general and extensible

representation for syntactic rewriting. The Dyck language is simply an abstraction of

well-nested expressions over a single pair of symbols that form an open and closing delimiter

pair. I.e., taking the symbols “(” and “)” as delimiters, ()() and (()) are valid expressions

in the Dyck language. A generalization of the Dyck language maintains a well-nested

structure over n pairs of delimiting symbols, denoted Dn. Like other literature, we refer to

Dn as “Dyck Languages”. The definition of Dn is:

S → ε | SS | x1 S x1 | x2 S x2 | · · · | xn S xn

where ε represents the empty string, S is the only non-terminal symbol, and terminal

symbols (xi, xi) for each i ∈ n delimiter pairs. We denote the terminal alphabet for this

grammar as T = X ∪X where X = {x1, . . . , xn} and X = {x1, . . . , xn} are disjoint sets

over opening and closing symbols, respectively.

Our key addition to the grammar allows interpolating strings between and inside

balanced delimiters in Dn. We add the rule S → c, for terminal c, where c ∈ Σ for a finite

alphabet Σ disjoint from X ∪X. We call this a general Dyck-Extended Language (DEL)

grammar. To be practically useful for parsing conventional programs, we specialize this

grammar and impose:

1. a finite set of matching delimiters, e.g., (,), {, }, [, ] as found in common languages.

2. a refinement that strings produced from the finite set Σ is regular, where strings
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correspond to tokens.

grammar ::= term EOF

term ::= '(' term ')' | '{' term '}' | '[' term ']' | term term | token

token ::= whitespace | string_literal | comment | any_token

whitespace ::= [␣\n\t\r]

string_literal ::= 〈"escaped string"〉
comment ::= 〈single or multiline comment〉
any_token ::= [. . .]+

Figure 2.3: A base grammar for parsing multi-language syntax. Productions above the line are
common to many languages. Below the line, token structure may vary in minor ways (e.g., different
string literal or comment syntax).

A DEL for multi-language transformation. We use the DEL definition shown in

Figure 2.3 as a basis for conventional languages, which extends the grammar above. The

extension defines concrete delimiters and partitions three kinds of tokens: whitespace,

string literals, and comments. String literals can contain any character (with appropriate

escaping, as usual). All other consecutive characters not already defined (i.e., ellipses denote

any character excluding whitespace characters, string delimiters and comments) form an

any_token. In practice, the finite character set of the language is that of typical source

code (i.e., ASCII or Unicode character sets). The distinction between string literals and

comments is significant because these are the primary categories that, if ignored, break

the ability to recognize well-balanced delimiters in code. String literals and comments are

simultaneously a source of syntactic variability and ambiguity across languages. Handling

these categories explicitly across languages allows our approach to correctly identify nested

terms within those languages.

There are two notable properties of the representation. First, a parser for this language

preserves all syntax (including whitespace) and partitions all characters coarsely into one
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of a few lexical constructs. This means that many separate lexical constructs in typical

grammars are treated as one lexical construct under any_token (i.e., we don’t distinguish

keywords from variables). Second, hierarchical tree structure is determined solely by

balanced delimiter syntax. Importantly, the representation preserves a well-formedness

property of nested terms with respect to these delimiters when we rewrite code. Our

intuition is that this representation models the essential concrete syntax for rewriting many

conventional languages like C, Python, OCaml, etc., with expressivity to describe nested

structures. At a high level, our representation can be seen as imposing a kind of s-expression

representation on conventional language syntax, extending similar flexibility of lisp-like

macro systems [45, 46, 86, 208] to many languages by accounting for varying syntactic

idiosyncrasies (e.g., different sorts of balanced delimiter, comment, and string literal syntax)

in a modular grammar.

In Figure 2.3, the delimited terms and token structure above the line denote commonly

shared (though coarse) productions for many contemporary languages. Below the line,

token syntax may differ across languages in minor ways (e.g., quotes used for string literals,

raw string literals, or differing comment syntax). The crux of our representation is that

it allows a modular and extensible parsing strategy. Using parser combinators [113], we

design a modular skeleton parser for the shared constructs (above the line Figure 2.3) that

is “open”: parsers for token groups (below the line) plug into the skeleton parser. Our parser

combinator architecture thus allows easy modification to handle syntactic idiosyncrasies at

the token level, while preserving the essential CFL properties denoted by balanced delimiter

syntax. In our experience, rewrite support for multiple languages with this architecture

boiled down to tiny modifications in token parsers (typically one line of code) for handling

individual language comment or string literal syntax. We now explain how the DEL

representation, and the parse strategy for it, ties into matching and rewriting syntax.
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2.4 The Rewrite Process

The rewrite process has two phases: (1) matching source code using a user-specified match

template and (2) rewriting source code based on a user-specified rewrite template. We

explain the intuition of our matching approach in Section 2.4.1. We introduce our key

innovation in Section 2.4.2 that lifts the intuition of tree matching to a parser generator

problem for modular grammars (as introduced in Section 2.3). We explain the rewrite

phase in Section 2.4.4.

2.4.1 Declarative Matching: The Intuition

Suppose we have a DEL grammar parser for Go that produces DEL trees for Go code

(i.e., the parser handles Go comments and string literals). The idea behind declarative

match templates is that they translate directly to an underlying DEL parse tree to be

matched against a DEL parse tree produced by source code. Match templates additionally

contain holes that unify with syntax in the source parse tree. Successful matches produce

environments binding variables to syntax, which are substituted into the rewrite template

in the rewrite phase (Section 2.4.4)

Figure 2.4 visualizes a match of template to source for our motivating example. On

the top is a parse tree of the source code; on the bottom, a parse tree for the template.

Dashed lines indicate matched tokens. Concrete tokens match syntactically in template and

source. Balanced delimiters (e.g., {} braces) form nodes corresponding to terms that contain

nested child terms; when encountered in the template, balanced delimiters must match

correspondingly in the source. Note that parse tree under in the simple DEL representation

flattens traditional terms (such as the if condition and for assignment) if they are not

enclosed by delimiters as specified for the language. Note also, however, that we can specify

alphanumeric delimiters for a language. For example, we can specify that the delimiters

if...fi should be well-nested for the Bash language.
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if f != nil { for... }

{ }

{body}frange:=x,_
for

nil!=fif

if :[var] != nil { for :[_]... }

{ }

{:[body]}:[var]range:=:[_]for

nil!=:[var]if

Figure 2.4: Visualization of matching for the nil-check pattern (Figure 2.1) using the DEL
representation. On the top is a parse tree of source code; on the bottom a parse tree for the match
template. Dashed lines represent matched terms. Thick lines indicate assignment of terms to
variables.

Holes match to syntax based on (a) prefix and suffix matches of surrounding terms

and (b) their level in the tree. As shown, the :[_] hole can only bind to sequences of

terms inside the brace-delimited if-body. The matching semantics of :[identifier] is to

match lazily up to its suffix. In practice, we do not need an explicit token class for the

category of any_token in Figure 2.3: we simply treat these as individual characters (i.e.,

each character can be considered its own term). Thus, holes can bind to any sequence of

characters (akin to regular string matching), restricted within its current level in the tree.

A hole’s suffix is terminated by (a) another hole or (b) the end of the sequence of characters

(preserving proper nesting) on its level. For example, the hole :[_] matches “_,␣x” up to

its suffix “␣:=␣range␣”, after which another hole occurs at the same level in the template.

A hole immediately followed by another hole (e.g,. :[1]:[2]) implies that the first hole

matches up to the empty string (i.e., :[1] will always be empty). We define one additional
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metasyntactic form: :[[identifier]], which matches one or more alphanumeric characters

and _. Hole syntax is interpreted differently when enclosed by string delimiters for a given

language. For example, it is possible to write ":[hole]", which will only match well-formed

strings in languages that use double quotes. Comments are treated as whitespace; thus,

comments can be captured by holes, but it not possible to explicitly match on comments

currently.

We do not define additional metasyntactic operators (e.g., regex operators); all other

syntax in the template relates to concrete matching.8 The concrete specification of templates

is separated from their interpretation, which must be implemented in the matching procedure.

For example, delimiter syntax implies matching must descend into the tree. For convenience,

we also interpret a single space in the template as matching repetitions of whitespace in

the source by default.9 This matching behavior can be modified to expect exact whitespace

matching in the tool configuration, if desired.

Implementing the match procedure as described raises two intertwined but separate

concerns: (1) producing parse trees from match templates and source and (2) matching

templates to source code by traversing the trees. These present two design challenges:

defining a concrete data structure to represent DELs (i.e., a tree, the output of parsing),

and implementing a configurable tree traversal strategy to enable configurable and flexible

match interpretations.

Our insight is that both challenges are solved simultaneously by lifting tree construction

and matching to a modular parsing problem. Doing so enables structural matching relating

template and source (a) without any concrete representation at all and (b) with configurable

matching represented directly by parsers, allowing for syntactic differences across languages,

and the ability to match character sequences (e.g., like regular string matching).

8Nothing stops us from complicating templates with more metasyntax; in practice we find doing so
eventually limits declarative specification.

9This is desirable in our running example when we don’t particularly care about the indentation size or
other additional whitespace.

28



2.4.2 Parser Parser Combinators for Matching

The key innovation behind our approach is an extensible procedure via parser combina-

tors [113] for structural matching that relates match templates and source code. The core

idea of parser combinators is to model parsers as functions that can be composed using

higher-order functions (combinators) to implement grammar constructions. Higher-order

functions make the parsing process separable. Thus, composable parser combinators enable

a modular parsing procedure for the modular grammar we developed in Section 2.3. We

might, for example, use a modular parsing strategy to produce DEL parse trees for matching.

However, this still leaves open the problems of (a) mapping parse results to a tree definition,

then (b) defining a configurable match traversal strategy over this representation, and (c)

creating an accessible declarative language to mapping user-specified templates to terms in

the tree definition (as in [201]).

Instead, we use parser combinators in a new way. We first recognize that parser

combinators can be composed to parse DEL languages. Such a DEL parser, when running

on source code, performs the analogous role of matching valid parses of concrete syntax

(to generate, in this case, a parse tree). Interestingly, a declarative match specification

is nothing other than a description of particular concrete syntax (interpreted by a DEL

parser), combined with holes, that is to be matched. Thus, a match specification can be

interpreted as a description of a parser for matching, rather than a concrete tree to unify

against a parse tree of source code. In particular, it describes a valid parse for a DEL

language fragment.

This insight leads to a solution where our approach generates on-demand parsers for

DEL language fragments from match templates. We develop what we call a Parser Parser

Combinator (PPC): a parser-generating parser using parser combinators. The approach

works by implementing a parser for match templates whose output is a parser (constructed

from parser combinators at runtime) that matches syntactic patterns according to the
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template. The match template PPC behaves as follows:

• When parsing a DEL token in the template (e.g., a string like if), generate a parser

for that token.

• When parsing whitespace, generate a parser to consume whitespace.

• When parsing nested syntax (indicated by delimiters), generate a parser for nested

syntax between those same delimiters.

• When parsing holes (:[...]), generate a parser that binds syntax to the identifier and

continues lazily up to the suffix in the template (i.e., generate a parser implementing

the match semantics described in Section 2.4.1 and store the result in the parser

state).

The PPC automatically chains generated parsers in these categories as it parses the

template at runtime. The resultant generated parser is lazy (i.e., it is a partial function)

which encodes exactly the behavior for matching syntax of interest. The appeal of this

approach is that we can now simply run the resultant parser directly on source code. The

result of the generated parser is only the environment binding variables to syntax for

successful matches. No intermediate data structure is needed to perform any matching.

The PPC approach also offers key advantages for configuring matching. First, the

interpretation of match template syntax (e.g., match semantics of holes, or whether to treat

whitespace significantly) is easily modified by augmenting the parser generating behavior

of the PPC when it encounters any particular kind of syntax in the template. Second,

our approach allows matching substrings familiar in regular expression-based code changes

(e.g., [27]) as opposed to restricting matching to complete tokens or terms. In practice,

match template content for non-whitespace characters maps to a matching parser character-

for-character (analogous to lexing, but without classifying specific tokens). Importantly,

well-formedness of nested delimiters is preserved when matching character sequences—a

character cannot match, for example, an unbalanced parenthesis character unless it occurs
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inside a string literal or comment. Third, the PPC is extensible: it is a module exposing

hooks in the parser-generation routine (which is modular, like the DEL grammar) so that

parsing language-specific syntax (e.g., strings, comments) is expressed in the generated

parser. The PPC is implemented as an OCaml functor that accepts a module with the

following signature:� �
module type Signature = sig

val user_defined_delimiters : (string * string) list
val string_literals : string
val comments : comment list

end� �
The PPC is extended using small definitions corresponding to this signature, which

express language-specific syntax properties. For example, the three definitions below form

a Base.Syntax module defining the syntax of the base DEL parser:� �
let user_defined_delimiters = [ "(", ")"; "{", "}"; "[", "]"]
let string_literals = []
let comments = []� �
The C parser extends the base parser. It includes the base delimiter syntax, and adds

the syntax for string literal and comment syntax using the prescribed definition names:� �
include Base.Syntax
let string_literals = ["\""; "'"]
let comments = [ Multiline ("/*", "*/"); Until_newline "//" ]� �
Constructors like Multiline denote, e.g., that C-style block comment syntax should be

used to parse multiline comments.10 Parsers are created from these syntax definitions and

embed into the PPC to parameterize both the significance of custom syntax in user-supplied

match templates and the significance of the same custom syntax when the resulting matcher

runs on source code. For example, the C definitions above reflect in the user-specified
10For brevity we elide other optional definitions that can further refine the PPC, e.g., raw string literals

that have different escaping criterion.
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template (the parser now understands that holes inside string delimiters should match

within string delimiters) and ensures that parentheses inside strings in the target source

code (like "(") do not affect the parsing of balanced parentheses.

We implement our PPC using a left-to-right, top-down parsing strategy. Any ambiguity

in the grammar is resolved by the ordered choice combinator (as in, e.g., [90, 137]), where

terms are parsed similarly to the order of Figure 2.3.11 The PPC implementation is roughly

500 lines of OCaml code. In practice, applying our PPC to 12 languages requires fewer

than 12 lines of additional code to account for the syntactic differences in comments and

string literals. Command-line flags activate parsers for a particular language.

Match contexts. Figure 2.4 illustrates matching one instance of a template to an exact

match of source code. Similarly, PPCs produce a parser that match one instance specified

by the template. In practice, we typically want to find multiple matching instances in

source code. We call each matching instance a match context. A match context describes

(1) the range of characters in the source code matching the template in its entirety and (2)

the unique environment binding holes to values for that instance.

For practical reasons, our objective is not to find all matching contexts, but rather

non-overlapping matches over sequences. For example, using the match template a b a and

a source a b a b a produces only the match a b a b a and not a b a b a. Disallowing

sequentially overlapping match contexts allows an unambiguous rewrite result. We produce

match contexts by shifting over the source code left-to-right and attempting to parse at

each point. If the PPC-generated parser succeeds at any point, we record the match context

(i.e, the match range and environment). We then shift to the end of the match range and

continue trying to parse at each point until the end of source is reached. Our tool allows

the same procedure to be applied successively on content in match environments, thereby

recursively rewriting nested matches.12

11We overlook the possibility of left-recursion in this grammar, which we gave to simplify presentation.
12Alternatively, the pass may be rerun to a fixpoint on the entire file.

32



2.4.3 Match Rules

Match rules apply additional constraints on matching. Match rules are high level predicates

on environments in match contexts. Our motivating example demonstrates the utility of

predicates on matching. For example, we can check that the variable ranged over is the

same as the variable compared to nil. As in Figure 2.1, using the same variable identifier

for multiple holes adds the implicit constraint that values matched by these holes should

be equal. This constraint is really syntactic sugar for a larger feature set of constraints that

can be specified explicitly and declaratively in a small DSL-like notation.

A match rule may accompany a match template and has the form where <...> and a list

of comma-separated expressions and evaluates to a boolean value. Commas are interpreted

as logical conjunction over the expression list. If the value is true, a match succeeds. The

default match rule is where true. The grammar is:

grammar ::= "where" 〈expression〉 〈"," expression〉∗
expression ::=

| "true"
| "false"
| 〈atom〉 "==" 〈atom〉
| 〈atom〉 "!=" 〈atom〉
| "match" 〈atom〉 "with" 〈branch〉 〈"|" branch〉∗

atom ::= ":[" 〈variable〉 "]" | 〈 "string literal" 〉
branch ::= 〈atom〉 "->" 〈expression〉

Figure 2.5: A simple constraint grammar for match rules.

Operators == and != check for syntactic equality (resp. inequality) on atoms. There are

only two atoms: one for variables (expressed in hole syntax) and string literals. The match

expression applies (disjunct) conditional constraints on values bound to holes.

It is sometimes useful to treat values as templates in match expressions, rather than

string values. When string literals contain hole syntax, they are interpreted as match
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templates. In this case, we may write match templates for the antecedent in match cases

which produce match contexts when evaluating the branch expression. For example,� �
where match :[expr] with | ":[1] < :[2]" -> :[1] == :[2]� �

evaluates :[1] == :[2] if the value bound to :[expr] produces a match context for the

match template :[1] < :[2]. The branch expression must evaluate to true for all match

contexts produced by the template.

We do not give extensive examples of transformations with rules here (the refactor

patterns we pursue in this chapter do not generally require constraints beyond checking

syntactic equality). More complex rules play a significant role in Chapter 3.

2.4.4 The Rewrite Phase

The rewrite phase takes all match contexts produced by the match phase and substitutes

the environment variables for values in a user-specified rewrite template. The rewrite

template can be seen as a partial function. We say that a rewrite template is instantiated

by an environment when all variables in the rewrite template are substituted for values.

After a rewrite template is instantiated, it replaces, in-situ, the entirety of matched content

for a given match context. Thus, there are two substitution passes: (1) substitution to

instantiate rewrite templates and (2) contextual substitution of instantiated templates in

the source. The rewrite procedure applies recursively for nested matching contexts, and are

substituted bottom-up as in the motivating example.

Well-balanced output. During the match phase, only well-balanced terms can be matched

by holes. By extension, rewrite output is well-balanced if and only if the rewrite template is

well-balanced. Thus, rewrites preserve key syntactic properties of well-balanced delimiters

found in most languages.

Rewriting comments. Associating comments across program manipulation is a known
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and long-standing problem, and not specific to our approach [156]. Holes do capture

comments and can be recovered during rewriting. However, comments are ignored when

interpreting match templates (otherwise, templates would require the user to anticipate

comment location and content to match other significant syntax). Matched syntax is

replaced according to the rewrite template as usual, and when matching on comments is

not significant, those comments may be erased by the rewrite if they are not captured by

holes.

The underlying problem is that we cannot anticipate how comments may be associated

with syntax for arbitrary languages. In lieu of better language design (which appears

inapplicable to contemporary languages) we note that inference techniques or explicit

comment support (e.g., adding an extra dimension of comment contexts) could provide

solutions for manipulating comments.

2.5 Evaluation

We evaluate Comby, an implementation of our rewrite process (Section 2.4) for DELs (Sec-

tion 2.3) using Parser Parser Combinators (Section 2.4.2). Section 2.5.1 evaluates Comby on

12 languages comprising 185 million lines of code using 30 transformations. We demonstrate

that our approach is fast; enables simple, declarative specifications for nontrivial transfor-

mations; and that it is effective in real (not just realistic) settings, to date producing over

50 changes merged into 40+ of the most popular open source projects across 10 languages.

In Section 2.5.2 we compare our approach to nine existing language-specific checker

and rewrite tools. We show that our multi-language approach produces accurate syntactic

checking and transformation for many syntactic properties covered by current tools, while

requiring far less implementation effort. Our results indicate that Comby is efficient, and

meets the demands of real-time development [84, 166]: transformation response time is

in the 100-400ms response time per file. Section 2.5.3 provides further discussion and
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Table 2.1: We ran 1–3 rewrite patterns (Pattern) per language (Lang) on the top 100 most-
starred GitHub projects for that language. K Files and MLOC is the aggregate thousands
of files and millions of lines of code, respectively. Proj is the number of projects where
patterns match; #M the number of matches; Time, the aggregate time to match/rewrite
over all files.

Lang K Files MLOC Pattern Proj #M Time

Go 131.4 48.8 nil-check 40 372 7m56s
str-contains 16 29 3m02s

Dart 28.2 4.9 slow-length 6 35 24s
where-type 10 165 35s

Julia 5.2 0.9
simple-map 5 8 23s
tweaks (3) 12 38 45s
redun-bool 1 1 24s

JS 66.1 9.2 redun-bool (2) 3 89 7m14s

Rust 22.0 3.8 short-field 42 305 21s
redun-pat (4) 2 12 1m15s

Scala 41.9 5.2
parens-guard 10 43 30s
forall 2 5 23s
count 13 46 23s

Elm 4.8 0.9 dot-access 2 3 13s
pipe-left 4 10 13s

OCaml 25.6 6.3 include-mod 11 77 2m01s
include-func 4 5 2m04s

C/C++ 166.6 85.5 no-continue 2 5 5m58s

Clojure 5.1 0.7 simpl-check (4) 34 330 21s

Erlang 13.2 4.3 infix-append 25 187 25s

Python 34.5 15.2 dup-if-elif† 4 10 6m59s
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limitations.

2.5.1 Real, Large Scale Multi-Language Rewriting

Experimental setup. We cloned the top 100 most popular repositories on GitHub (ranked

by stars)13 for each of 12 languages. We balanced imperative and functional languages (some

mature, others more recent) to demonstrate broad applicability. The 1,200 repositories

comprise over 185 million lines of code. We wrote 1–3 rewrite patterns per language (we

elaborate below). We ran each rewrite pattern in parallel by file across 20 cores (Xeon

E-2699 CPU, Ubuntu 16.04 LTS server, limiting experiments to 1GB of RAM). Matching

was set to timeout after 2 seconds per file. Roughly 2% of Python files timed out (large,

autogenerated code), while timeout for files across other languages accounted for less than

0.5%.

Choosing rewrite patterns. We chose patterns from existing linters, checkers, rewrite

tools, and style guides that were likely to improve code readability or performance. Since we

submitted many of our transformations to active code bases, we avoided stylistic patterns

that were a matter of taste. The selected patterns either (1) remove clearly redundant code;

(2) simplify readability; (3) replace functions with more performant versions; or (4) identify

clearly buggy duplicate checks. We include nontrivial patterns that match on balanced

delimiters for every language.

This part of our evaluation prioritizes (a) breadth of language application and (b)

improving active real code. We therefore applied 1–3 choice patterns per language rather

than a comprehensive catalogue of patterns for any particular one.

Results overview. Table 2.1 shows the results of running multiple rewrite patterns

across 12 languages. The rewrite patterns are shown in the Match Template and Rewrite

Template columns of Figure 2.6. As written, these are the actual inputs to Comby (no extra

13In October, 2018.
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metasyntax or programming required).14 We applied 30 unique patterns to our data set.

Some patterns, like “tweaks” and “redun-bool” check for similar patterns with syntactic

variations (we show a representative transformation for these in the table). The number of

variations is indicated in parentheses in the Pattern column, and the running time is an

aggregate over variations. In aggregate, running all patterns takes about 42 minutes and

parses 282 million lines of code (by common word count including newlines and comments).

Rewriting is fast: 13 out of 21 patterns terminate in under a minute for all 100 projects of

that language, while the longest runtime for a pattern takes roughly 8 minutes (nil-check for

Go code). Generally, longer runtimes correspond to larger codebases of popular languages

(e.g., Go, Javascript, Python, and C). Match templates and source code content also

affect runtime: The Go nil-check pattern takes more than twice as long compared to the

str-contains pattern due to increased cases of matching the if :[1]... pattern.

The number of projects for which a rewrite pattern applies range from 1 to 42 (Proj)

and the number of matches from 1 to 372 (#M). To demonstrate our multi-language

rewrite approach in a real setting, we submitted a subset of these changes for merging

into upstream repositories via GitHub pull requests (PR). This demonstrates both the

opportunities for syntactic transformation in large, highly popular repositories and the

ability of our approach to produce actionable, correct, and automatic syntactic changes in

this setting. Submitting all changes was not appropriate because changes may touch code

dependencies not part of the main project, or code that explicitly tests for bad patterns

(e.g., linter tests). Unless stated otherwise, we used the following criteria to submit pull

requests: (1) the project must be active (code had been committed in the previous 30

days); (2) the changes should not affect files under a test or vendor directory; (3) we prefer

projects where we can validate syntactic changes via a continuous integration build.

The results of our PR campaign are shown in Table 2.2. We submitted PRs to 50

projects. The Merged column shows the number of syntactic changes submitted and the

14Modulo newline stripping, for presentation.
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Lang Pattern Match Template Rewrite Template

Go nil-check if :[1] = nil { for :[2] := range :[3] {:[4]} } for :[2] := range :[3] {:[4]}
str-contains if strings.Index(:[1], :[2]) != -1 {:[3]} if strings.Contains(:[1], :[2]) {:[3]}

Dart slow-length if (:[1]s.length = 0) if (:[1]s.isNotEmpty)
where-type .where((:[1]) => :[1] is :[[type]]) .whereType<:[type]>()

Julia
simple-map map(:[1]->:[[x]](:[1]), :[y]) map(:[x], :[y])
tweaks (3) ceil(:[1]/:[2]) cld(:[1],:[2])
redun-bool (:[1] || :[1]) (:[1]) # redundant expr

JS redun-bool (2) (:[1] && :[1]) (:[1]) // redundant expr

Rust short-field { :[[field]]: :[[field]] } { :[field] }
redun-pat (4) if let Ok(_) = Ok:::[t](:[v]) if Ok:::[t](:[v]).is_ok()

Scala
parens-guard for {:[body]if (:[1]) } for {:[body]if :[1] }
forall .foldLeft(true)(:[1] && :[1]) .forall(identity)
count .filter(:[1]).size .count(:[1])

Elm dot-access List.map (\:[[x]] -> :[[x]].:[[f]]) :[[vs]] List.map .:[f] :[vs]
pipe-left |> List.map :[[fn1]] |> List.map :[[fn2]] |> List.map (:[fn1] >> :[fn2])

OCaml include-mod module :[m] = struct include :[[x]] end module :[m] = :[x]
include-func module :[m] = struct include :[[x]](:[b]) end module :[m] = :[x](:[b])

C/C++ no-continue for (:[1]) { continue; } for (:[1]) {}

Clojure simpl-check (4) (= :[1] nil) (nil? :[1])

Erlang infix-append lists:append(:[1], :[2]) :[1] ++ :[2]

Python dup-if-elif† if :[1]::[_] elif :[1]: if :[1]::[_] # duplicate check

Figure 2.6: The match-rewrite templates for the patterns in our large-scale evaluation. We performed additional preprocessing
for the dup-if-elif Python pattern (†).
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Table 2.2: Pull Request Results. Merged shows the number of changes submitted, and outcome: 3means changes were merged;
� means a PR is in progress; – means changes were rejected for reasons unrelated to their content; 7 indicates incorrect changes. †: the
redun-bool and dup-if-elif required manual fixes.

Lang Pattern Project #KLOC #M Merged

Go nil-check

go-langserver 247.5 2 3 2
helm 50.2 1 3 1
prometheus 902.4 2 3 1
rclone 596.9 10 3 1
go 1,703.2 3 7 2 3 1
cli 10.4 1 3 1
rancher 2,695.2 14 3 1
kubernetes 4,236.6 22 �10

str-contains
gorm 14.6 2 3 2
vault 1,553.1 1 3 1
vitess 297.7 2 3 2

Dart slow-length
sdk 2,361.3 18 3 3
sqflite 6.9 1 3 1
over_react 23.3 1 3 1

Julia simple-map
Dagger.jl 3.7 1 3 1
JLD.jl 4.5 1 3 1
IJulia.jl 2.7 1 3 1

redun-bool† DataFramesMeta.jl 1.5 1 3 1

JS redun-bool† Rocket.Chat 149.2 3 3 3
angular 297.8 1 3 1

Rust short-field

rust 1,004.8 133 368
clap 33.6 6 – 6
conrod 34.1 5 � 5
coreutils 45.5 1 3 1
exa 9.7 1 3 1
fd 3.9 1 3 1
gluon 66.4 6 3 6
hematite 3.9 2 3 2

...
...

...
...

...
...

Lang Pattern Project #KLOC #M Merged

...
...

...
...

...
...

Scala
forall scala-js 190.6 1 3 1

shapeless 47.1 4 – 4

parens-guard Ammonite 22.5 1 3 1

count FiloDB 44.9 7 3 7

Elm pipe-left elm-graphql 36.4 1 3 1
node-test-runner 40.1 2 – 1

OCaml

include-func
bap 100.7 1 3 1
pyre-check 79.4 1 3 1
hhvm 213.5 1 3 1

include-mod

base 43.1 1 3 1
opium 1.6 1 3 1
flow 147.8 2 3 2
owl 131.0 12 312

C/C++ no-continue radare2 745.3 4 3 4
php-src 1,428.4 1 3 1

Clojure simple-check pedestal 18.7 12 3 1

Erlang infix-append
zotonic 102.2 5 3 5
lasp 15.7 4 3 4
kazoo 345.8 1 � 1

Python dup-if-elif†
matplotlib 229.3 1 3 1
zulip 140.5 1 – 1
powerline 30.0 1 3 1
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outcome:

3: 43 projects accepted more than 50 individual changes.

�: 3 projects have a PR in progress, or received no response.15

–: 4 projects rejected changes unrelated to change content.

7: Only two changes were outright wrong.

The number of PR changes in the Merged column are either fewer or equal to the number

of Matches, since we filtered out matches in test or vendor directories. Across all projects,

the maximum time for a single refactor pattern is 19 seconds (the nil-check pattern for

Kubernetes, which is the largest project in our data set). The median time per pattern, per

project is 0.55 seconds. We elaborate on patterns and results for each language below.

Go. The nil-check pattern identifies redundant nil checks, as in our motivating example.

The str-contains rewrite uses a clearer string.Contains(...) call compared to checking

string indices for substring containment (see Fig 2.6). Changes from all of our PRs are

accepted except for one, which went stale. Our PR to the Go compiler highlights an

interesting case in that it is the only case where a syntactic change was outright wrong.

The problem is that removing the check on :[1] in the pattern is only allowed on maps and

slices, but not pointer types. In the Go PR, two cases compare to pointers. In the remaining

PRs, these comparisons were done against appropriate types, and safe to remove. We make

two observations. First, purely syntactic transformations are vulnerable to language design

where equivalent syntactic changes have different semantic implications. Thus, while our

approach suffers from syntactic ambiguity, we note that this ambiguity is a shortcoming

that should be, in principle, avoided during language design for purposes of program

manipulation [156]. Second, type information aids legal and complex syntactic changes

(e.g., in refactorings [187]) and complements our approach. We note that recent uptake

15In April, 2019.
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in the Language Server Protocol (LSP)16 presents an elegant method for incorporating

type information into our approach. With LSP, we can use external language servers (e.g.,

the go-langserver) to lookup types without having to parse, maintain, or persist type

information for rewriting.

Dart. The slow-length pattern improves performance when checking the length of iterable

containers (e.g., lists). The where-type pattern improves readability and removes redundant

runtime checks. Both patterns are in the Effective Dart usage guide [28]. Because the sdk

project does not have a CI build on GitHub, we validated a subset of syntactic changes

locally. The slow-length pattern is susceptible to syntactic ambiguity: if the object is a

string, there is no corresponding isNotEmpty method. As a heuristic, we changed the pattern

to match variables ending in ‘s’ as a likely indication that an Iterable object was checked

(e.g., matches included ‘columns’, or ‘argNames’). This presents an interesting case where

matching at the character granularity can be desirable. The changes using this heuristic

were all successfully validated by CI builds or local compilation. Projects with matches

for where-type were all inactive or deprecated, except for the Dart sdk. Not all objects

implement the whereType method, so the rewrite may fail to compile (none of the changes

we validated failed to compile). In both cases, additional type or interface information

complements our approach.

Julia and Javascript. The simple-map pattern removes redundant code produced by

anonymous function syntax. The tweaks patterns can improve performance for floating

point operations in tight loops. Both of these patterns are taken from Julia’s style guide

and performance tips. We discovered 38 cases where tweaks could potentially improve

performance (Table 2.1), but this required benchmarking individual project performance

before and after the change. Due to the extra burden of validating performance effects, we

skipped PRs for this pattern.

16https://microsoft.github.io/language-server-protocol
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We also checked Julia and Javascript code for redundant boolean expressions. On the

one hand, this check is desirable because the pattern clearly indicates redundant or (more

often) wrong code. On the other, it can be hard to predict a correct rewrite output when

the code is wrong. By default, our rewrite output produces a semantically equivalent

change with a comment to note the problem. Overall, this pattern demonstrates fast

matching capability with optional rewriting. The one issue in Julia code and three issues in

Javascript needed manual fixing;17 in the case of angular, the expression was redundant

and corresponds to the rewrite template :[1].

Rust. The short-field pattern removes redundant single named fields for data structures

(note we use :[[..]] match notation to limit matching to single identifiers). The redun-pat

eliminates redundant let... pattern matching for option and result types. Both checks

are implemented in an existing rust linter. Our largest pull request updates 68 instances

where the Rust compiler now uses shorthand notation for single field structures (additional

matches exist inside test directories). The PR for clap was closed because the code is being

removed. We did not find real cases of redun-pat.

Scala. All three Scala patterns improve readability, and are implemented in existing tools

(scalafmt and scapegoat). The PR for shapeless was rejected because the original syntax

explicitly tested foldLeft behavior. This was one of our initial submissions, and influenced

our decision to ignore files in test directories. Three eligible changes for no-guard-paren

broke whitespace indentation and required reformatting; we skipped these and submitted

a single PR where indentation was preserved. We discuss reformatting more generally in

Section 2.5.3.

Elm. The Elm patterns simplify syntax by removing redundant anonymous functions

(dot-access) and composing sequential map operations over list elements (pipe-left). We

focused on List patterns, being a common data structure. Variants for these patterns can

17e.g., (isnan(a[i]) || isnan(a[i])) became (isnan(a[i]) || isnan(b[i]))
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substitute List for Array or Set, but these are less common in practice. The dot-access

pattern only rewrote code for two inactive projects (Table 2.1), so we did not submit

pull requests for these. One pipe-left change was accepted, while the other was rejected

because it touched files part of external dependencies.

OCaml. The include-mod and include-func removes redundant module include syntax for

modules and functors respectively. The majority of include-mod matches are in compiler

tests, which we did not submit in PRs. In some cases, the include-func pattern required

reindentation because the module body (:[b]) captures syntax that may span multiple

lines. All of these PRs were merged.

C/C++. The no-continue pattern removes redundant continue statements inside for

loops. The pattern is based on a check in clang-tidy. A number of variants are possible

(e.g., replacing for with while or do-while syntax). We found two real cases of redundant

continues in the C/C++ dataset. Both of these PRs have been accepted.

Clojure. The simpl-check pattern for Clojure simplifies conditional checks. Syntactic

variants include testing boolean values with true? and false? checks. All of the matches

in the Clojure data set (Table 2.1) occurred in inactive projects, except for one. That PR

was successfully merged.

Erlang. The infix-append pattern is part of the Erlang syntax tools suite. It replaces a

lists:append function call with a terse ++ infix operator. Two PRs were accepted, while

one remains open.

Python. The dup-if-elif pattern detects identical conditional checks on both branches

of an if-elif. Matching on possibly nested and indentation-sensitive if statements is

challenging compared to concrete syntax (e.g., braces) because whitespace is typically

treated insensitively in many languages. We can implement an additional parser combinator

hook to support layout-sensitive parsing in the PPC, but currently Comby treats indentation

insensitively. However, our rewrite approach presents a convenient and interesting alternative
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Figure 2.7: Parallelism yield running the nil-check pattern on Kubernetes (4.2 MLOC) up
to 32 cores. Parallelism scales linearly up to 12 cores.

via syntax preprocessing. We used Python’s pindent18 utility to annotate the end of

indentation-sensitive blocks with comments. We then ran a rewrite rule to convert block

annotations to braces compatible with existing delimiter parsers. The preprocess step

took approximately 6 minutes and performed 600K rewrites on the Python data set.19 We

discovered three legitimate dup-if-elif matches. Like the redun-bool pattern, the pattern

identifies clearly buggy code and required manual fixes for the two merged PRs. In the

remaining PR, we were asked to perform a larger refactoring that removes references to the

buggy function so that it can be removed entirely.

Parallel performance and memory use. To quantify memory use and parallelism

performance for large projects, we benchmarked our approach on Kubernetes (4.2 MLOC,

the largest project in our PR campaign) with the nil-check pattern. We ran a precise

memory profile of our implementation using OCaml Spacetime,20 on a single core. Maximum

memory use was only 44 MB while the median was approximately 10 MB. Low memory

use is attributed to the PPC generating a lazy parser that persists only matching syntax

per file.

We evaluated speedup of our implementation up to 32 cores. Figure 2.7 summarizes our

18https://github.com/python/cpython/blob/master/Tools/scripts/pindent.py
19The pindent preprocess step is also invertible.
20https://caml.inria.fr/pub/docs/manual-ocaml/spacetime.html
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result. Performance scales linearly up to 12 cores before tapering off. Performance deviates

slightly for higher numbers of cores due to heuristic partitioning of work (i.e., files) per core.

2.5.2 Comparison with Existing Tools

Experimental setup. We compare Comby to nine language-specific checker and rewriting

tools in terms of (1) syntax checking and rewrite accuracy, (2) implementation burden,

and (3) runtime. The tools provide a variety of functions including refactoring, code

simplification, and linter checks. Four tools only check syntax, and do not rewrite. We

targeted real-world projects where possible; otherwise, we applied patterns on the tool’s test

suite. We opted to use tests when isolating transformation behavior in tools was difficult.

For example, some tools implement multiple syntactic checks under a single command line

flag. Individual tool configuration also hinders a direct speed comparison. We provide the

wall-clock times for running each pattern to indicate that our running time is competitive,

but do not generally claim to be faster.

Experiments were run on a single core (2.2 GHz Core i7) with 1GB RAM. The hardware

is comparable to a modern single-user developer machine, and supports our claim that our

approach meets demands of real-time development response times.

We prioritized demonstrating breadth of application across languages, and include only

a selection of patterns for eight of the nine languages (many more patterns are possible).

For one functional language (Clojure) we implemented multiple patterns to evaluate

how comprehensively our approach can express syntactic transformations compared to a

production rewrite tool.

Tool comparison. Table 2.3 shows results: Comby produces identical or similar functionality

for detecting and rewriting the investigated patterns. The 2to3 tool (part of cpython) assists

in refactoring Python 2 code to Python 3. Comby’s output is identical to 2to3’s. Comby also

produces the same output for two patterns implemented by Scalafmt, a Scala formatter
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Table 2.3: Tool Comparison. We compare against 9 existing checker and rewrite tools for multiple Patterns. (R) in the Tool column
means that the tool offers rewrite capabilities; remaining tools only emit warnings. Target Kind describes the transformation target:
either a selection of code extracted from a popular open source project, or tests that are part of the tool. Impl. (LOC) refers to the
implementation’s number of lines of code. In general, the implementation burden for rewriting in our approach (Us, Impl.) is less
compared to that of language-specific implementations for the set of syntactic properties considered. The exception is kibit, which is
comparably terse due to a logic programming representation for rewrite rules.

Lang Tool Pattern LOC Matches Time (ms) Impl. (LOC) Target
Tool Us Tool Us Kind

Python 2to3 (R) next 6,908 11 911 486 76 4 osf.iorange 13,057 14 1,309 895 53 8

Erlang erl-tidy (R) append 4,891 2 1,426 277 8 2 ejabberdmap 11,389 16 1,633 389 20 2

Elm elm-lint map 64 1 1,712 124 67 8 graphql
dot-access 153 2 2,727 130 51 2 take-home

Go gosimple nil-check 236 1 1,315 130 39 5 helm
str-contains 467 1 2,409 132 65 2 gitea

Dart linter where-type 43 3 1,718 122 74 9 tests
slow-length 518 1 1,808 134 89 2 sqflite

Rust clippy redun-pat 71 4 115 137 74 11 testsshort-field 74 5 148 141 38 5

Scala Scalafmt (R) curly-fors 32 2 1,312 154 80 6 testsparens-guard 41 2 1,451 270 32 2

C++ clang-tidy (R) no-continue 2,143 1 325 155 15 2 radare2

Clojure kibit (R) various (81) 182 97 6,840 164 215 240 tests
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rewrite support tool. Comby’s output is identical to erl-tidy, an Erlang refactoring tool,

except for one match case of the map pattern. The output differs because erl-tidy creates

unneeded fresh named variables in the output. Comby detects the same syntax issues found

by a subset of linter checks implemented for Go, Dart, Elm, and Rust across respective

projects and linter tests.

Implementation effort and size. We manually reviewed code in existing tools to

determine the implementation size (Impl.), a proxy for implementation effort. Checks

were generally implemented at the function level, or within a larger function. We manually

isolated check functionality within these functions, stripped newlines, and counted the lines

of code. Generally, the implementation burden is far lower with our declarative match and

rewrite templates.

Speed. All Comby transformations complete in under 400ms per file (Python’s next and

range patterns run on multiple files); thus, syntactic transformation is responsive enough

to integrate with real-time development.

Parsing robustness. Because existing tools require ASTs, some do not work if the target

file cannot be correctly parsed. For example, clang-tidy may require header files to parse

C++ files. We found that clang-tidy fails to parse C++ files in GCC-compiled projects

(e.g., PHP) where the required header files contain GCC extensions like asm goto. elm-lint

may also fail to parse files due to irregular comments. In contrast, our approach was robust

to syntactic irregularities.

Clojure. To evaluate expressiveness more deeply, we implemented multiple patterns based

on a dedicated syntax rewriter for Clojure. Kibit replaces Clojure code patterns with

more idiomatic or terse versions (cf. simpl-check in Table 2.1). Kibit is an apt tool

for comparison because it uses logic programming to specify rewrite patterns that are

syntactically close to Clojure syntax. For this reason, we were able to easily translate Kibit

rewrite patterns into our match and rewrite template format (some are identical, modulo
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hole syntax). We implemented 81 templates for simplifying arithmetic, equality, collection,

and control flow syntax for Clojure. Comby’s output is identical to Kibit’s on Kibit’s tests

for all of these patterns. We were unable to implement one pattern that Kibit supports,

which relies on detecting class names for static methods versus object methods. Kibit’s

logic programming pattern representation is comparatively short and closely matches our

declarative syntax (many specifications fit on one line, which accounts for a lower number

of LOC in Table 2.3).

2.5.3 Discussion

Experience compared to existing tools. We noticed the following undesirable behavior

in existing tools: (1) failure to handle files due to parsing errors or inadequate parsing

support (2) false negatives where tools miss rewriting opportunities (3) hanging on certain

files. From a usability perspective, we found Comby to be more robust: we never encountered

runtime parsing errors, were able to transform code that other tools could not parse, and

performed transformations that other tools missed.

Known limitations. Our approach enables lightweight, purely syntactic rewrite patterns.

We emphasize simple and declarative specification, and have shown that patterns are

particularly effective at, e.g., removing redundant code. However, we do not currently

incorporate type information, which limits our ability to implement richer rewrite patterns

found in tools like clang-tidy. This is problematic for languages with syntactic ambiguity

with respect to program manipulation [156], as we noted for the Go nil-check pattern.

However, this problem is not unique to our approach: linters can suffer false positives for

the same reason. Further, redundant syntax, like redundantly parenthesized expressions,

may require additional match templates (or rules) to account for syntactic variation.

For transformations that change nesting levels or whitespace, code may need reindenta-

tion. We treat whitespace liberally by default; enabling finer-grained control over whitespace
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complicates matching on non-whitespace syntax. We found that patterns sometimes do

preserve desired whitespace, but in general a post-process formatting tool is effective for

(re)applying whitespace style.

In our experience, declarative templates are well suited to patterns that describe a

syntactic change that does one thing well. More complex transformations may be difficult to

express in a single rewrite pattern, and could require running transformations in succession

(consistent with work using rewrite stages for transformation [174, 185, 194]). There may

otherwise be syntactic transformations that are overly difficult or impossible to specify

declaratively. Such patterns are hard for us to qualify generally; we mitigate by having

shown real-world value using existing patterns.

We have not yet implemented support for layout-sensitive or context-sensitive language

properties. Our approach therefore cannot handle indentation-sensitive properties of

languages like Python. Specifically, it is not possible to match on nested code blocks that

are delineated by whitespace. Parser combinators are sufficiently powerful to recognize these

constructs, and we thus believe our approach can extend to handle this complexity. For

example, we could emulate support by transforming Python code to a grammar with explicit

block delimiters as in the indent.py script. Declarative templates are correspondingly

converted to a representation that matches a correct level of relative indentation.

On the other hand, it is not always possible to recognize certain constructs in statically

typed languages (like OCaml) based on syntax alone. Thus, our approach can fail to match

constructs corresponding to, e.g., the complete syntactic extent of an expression following a

let binding in OCaml. The possibility of incorporating type information may reveal ways

to overcome these challenges.
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2.6 Related Work

Parsing expression grammars (PEGs) [90] were developed to address shortcomings in

regex matching, and can match non-regular constructs (e.g., balanced parentheses). PEGs

describe a top-down parser for a language using the ordered choice operator. Existing tools

implement PEGs to enable non-regular matching (Rosie [36], instaparse [32]) and modular

syntax extension (Rats! [101]). Match specifications for these tools resemble grammar

definitions and include, e.g., explicit metasyntax for parsing with ordered choice. Our

match approach can be seen as automatically generating PEG-like parsers from declarative

match templates, where templates lack metasyntax besides holes, and abstract from the

underlying grammar interpretation.

TXL [73] is a transformation tool applicable to multiple languages where users specify

both a grammar specification and transformation rules in the TXL language. Learning the TXL

language (where, e.g., the grammar nonterminals are typically referenced or defined in the

rewrite specification) is expensive compared to our approach. Similarly, language workbench

tools [88] like Rascal [125] expose metaprogramming languages with grammar metasyntax

to enable transformation. The srcML [71, 72, 150] platform features transformation for

multiple languages, but uses an intermediate XML representation requiring programming

to manipulate syntax, rather than declarative specification. Cobra [110, 111] is a lightweight

approach for implementing syntactic checks (and optional transformation) primarily through

programming and a query language.

Compared generally to these approaches, our design disentangles match and rewrite

specification from grammar definition through a predefined (but configurable) DEL grammar

operationalized as a parser generator. Template specification is declarative as opposed

to programmatic. Matching is a function of parser generation that acts directly on syn-

tax, without intermediate tree representations. This notably removes the complexity of

translating a declarative concrete syntax to an underlying abstract syntax.
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Cubix is a multi-language transformation tool using compositional data types and is a

heavyweight solution intended for complex rewrites (like lifting variable declarations) with

strong, type-based guarantees [127]. Our approach differs in two principle ways. First, we

prioritize lightweight transformation (templates take seconds or minutes to write), whereas

Cubix is not intended for lay programmers. Second, Cubix intends to amortize the cost

of defining transformations across multiple languages. In principle, a developer writes a

transformation pattern just once (e.g., to perform variable hoisting) which can then be

performed on programs for many language at once. In contrast, our approach intends to be

generically declarative, but sensitive to individual language syntax.

Coccinelle [132] is notable for using a declarative approach with similar specifications

to ours to transform syntax, although it introduces additional metasyntax and uses a fixed

grammar that only parses C code. Refaster [203] introduces a template-based approach

restricted to Java, but can additionally draw on type information. D-expressions derive

from Lisp macros [86] and use a skeleton syntax tree to support a simple core grammar

definition for the Dylan language [45], later adapted for Java [46]. In our work, an extensible

skeleton parser encodes handling syntactic variations to enable macro-like functionality for

many languages.

Parser combinators [112] are central for enabling our modular transformation approach

for flexibly handling multiple language syntax. In this sense, we relate to multi-language

static checking using parser combinators [57]. Our focus, however, is on transformation.

Partial or selective parsing as in semi-parsing [214], island-grammars [159], and micro-

grammars [57] relate to our idea of using a coarse grammar, which we parameterize with

respect to language-specific syntax. The relation between structural tree matching and

parsing is observed by [109]; in this sense, our approach operationalizes configurable tree-

like matching as a function of modular, configurable parser combinator generation via

declarative specification.

Okasaki observes the phenomenon of parsers-producing-parsers [171] and notes how a

52



“prelude” parser can define another parser for parsing the remainder of a program. Templates

in our approach correspond to a kind of extensible “prelude” parser; the resulting parser

runs on the complete program and records only syntactic fragments of interest for rewriting.

Our approach extends Dyck languages (being simple yet fundamental to CFL proper-

ties [89, 94]) as a foundation for representing contemporary language syntax and structure.

Visibly pushdown languages [41] also build on the essential CFL properties of Dyck languages

toward term rewriting [62] and program analysis [64].

Refal [35, 194] is a pattern matching language and tool for supercompilation. Refal’s

operation and application emphasize our own: matching and rewriting patterns is valuable

for removing redundancy and improving performance. Our tools presents further potential

for large-scale cleanup and code changes, such as those performed by Google’s Rosie [138].

2.7 Summary

This chapter presented a lightweight approach to syntactic transformation for multiple

languages. In general, defining a universal AST for transformation is problematic: concrete

definitions must be referred to, modified, or extended to support multiple languages. Our

approach skirts this issue by focusing on universal CFL properties of languages (i.e., nested

constructs) rather than defining a concrete representation. We lift the matching problem

to declaratively generate parsers that detect syntax of interest directly. We use PPCs to

modularize the behavior of parser generation to (a) preserve essential CFL properties while

(b) allowing hooks to customize the parsing of language-specific syntax. Matched syntax is

recorded during parsing and transformed contextually and hierarchically based on rewrite

templates.

We implemented these ideas in a new tool called Comby. We evaluated our approach by

applying 30 rewrite patterns to the 100 most popular GitHub projects for 12 languages

totaling 185 million lines of code. Over 50 changes have been merged into upstream
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repositories. We also showed that our declarative approach requires significantly less effort

to specify rewrite patterns compared to language-specific tools used in practice. Ultimately,

having a flexible way to manipulate syntax selectively across languages is valuable for

techniques in automated program transformation. In subsequent chapters, we show how

this ability allows new ways to tailor programs to achieve better analysis results (Chapter 3,

Section 3.3.1 and Chapter 4, Section 4.4.2) and overcoming syntactic barriers to performing

fixes in automated program repair (Chapter 5, Section 5.3.3).
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Chapter 3

Tailoring Programs for Static Analysis

This chapter presents a new technique for tailoring programs to improve static analysis.

The key idea is to apply program transformations (using templates as in Chapter 2) that

target problematic code patterns that are known to induce false positive bug reports. Our

technique promotes program transformation as a general primitive for improving the fidelity

of analysis reports (we treat any given analyzer as a black box). Our evaluation is the first

systematic study to broadly demonstrate the applicability and benefits of this technique and

perspective: we evaluate false positive reduction for five different static analyzers supporting

three different languages (C, Java, and PHP) on large, real-world programs (>800KLOC).

We show that our approach is effective in sidestepping long-standing and complex issues in

analysis implementations.

3.1 Introduction

Static analysis has proven indispensable in software quality assurance for automatically

catching bugs early in the development process [83, 186]. A number of open challenges

underlie successful adoption and integration of static analyses in practice. Analyses must

approximate, both theoretically [129, 142] and in the interest of practicality [61, 68]. Devel-
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opers are sensitive to whether tools integrate seamlessly into their existing workflows [116];

at minimum, analyses must be fast, surface few false positives, and provide mechanisms to

suppress warnings [67]. The problem is that the choices that tools make toward these ends

are broadly generic, and the divergence between tool assumptions and program reality (i.e.,

language features or quality concerns) can lead to unhelpful, overwhelming, or incorrect

output [114].

Tool configuration and customization is crucial for usability and directing analysis

behavior. The inability to easily and selectively disable analysis checks and suppress warnings

present a significant pain point for analysis users [67]. Common existing mechanisms

include analysis options for turning off entire bug classes (generally too coarse [116]) or

adding comment-like annotations for suppressing spurious warnings at particular lines (a

predominantly manual exercise that leads to code smells and is insufficiently granular [67,

116]). It is notably the analysis author, not the user, who has agency over the shape of these

analysis knobs: which configuration options are available and how to suppress errors. It

follows that it is infeasible for analysis writers to accommodate individual user preferences or

analysis corner cases through a myriad of configuration options or suppression mechanisms.

An analysis user always has one notable ability to influence analysis behavior and

output: modifying their program. For example, developers may slightly modify existing

code in a way that suppresses false positives or undesired warnings. A concrete example

is shown in Figure 3.1 where a change was made in rsyslog1 to suppress a Clang Static

Analyzer warning. The analyzer warns that a potential out-of-bounds access occurs when

comparing two strings using strcmp. However, the warning only surfaces when complex

macro expansions take place (in this case, macro expansion activates for strcmp because

it is passed a string literal). One contributor notes that under normal circumstances

these warnings are suppressed for macros, but can surface if macro preprocessing is done

1https://github.com/rsyslog/rsyslog/commit/ea7497
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� �
+ // clang static analyzer work-around
+ const char *const const_END = "END";
+ if(strcmp(rectype, const_END))
- if(strcmp(rectype, "END"))� �

Figure 3.1: A program change that works around a static analysis issue in rsyslog.

manually.2 The workaround in Figure 3.1 extracts the string literal out of the strcmp call

so that no macro expansion takes place. After the change, the analyzer sees strcmp as a C

library function and no longer emits a warning. In practice, modifying programs to avoid

analyzer issues is exercised as manual, one-off changes. Changes like the one above can have

the undesirable side effect of persisting in the code solely to suppress unwanted analysis

warnings. Despite these shortcomings, modification of the analysis target (the program)

does, however, allow a primitive for software authors to draw on their particular domain

knowledge of their code to positively influence analysis behavior. For example, a developer

may recognize that a particular API call is the cause of a false positive warning, and modify

or model the call differently to suppress a false positive.3

Our technique in particular affords analysis users the ability to change and suppress

analysis behavior when no recourse is available via analysis support (e.g., when analysis

maintainers delay fixing analysis issues, or limit tool configuration options). Our insight is

that the same flavor of one-off, manual code changes like the one above can apply generally

and automatically to remedy analysis shortcomings. Additionally, workaround changes

need not have the undesirable trait of persisting in production code, and are applied

only temporarily while performing analysis. We propose a rule-based approach where

simple, declarative templates describe general syntactic changes for known problematic

code patterns. Undesired warnings and false positives are thus removed during analysis

by rewriting code fragments. Our approach can be seen as a preprocessing step that

tailors programs for analysis using lightweight syntactic changes. It operates on the

2https://bugs.llvm.org/show_bug.cgi?id=20144
3https://github.com/facebook/infer/issues/781.
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basis of temporary suppression (a desirable trait in configuring analyses [116]) and also

enables catching false positives before they happen by rewriting problematic patterns.

Since patterns can occur across projects, codifying transformations as reusable templates

amortizes developer effort for suppressing false positives.

The notion that syntactic transformations abstract semantic transformations [75] under-

pins our intuition that manipulating syntax can achieve desirable changes in the analysis

domain and implementation. Work on semantic properties of transformations emphasize the

potential for improving analysis precision [144, 162]. Despite theoretical appeal for tailoring

analyses via transformation [162], there is currently little demonstrated applicability or

benefit in practice.

A key objective of our work is to demonstrate the broad feasibility, applicability,

and effectiveness of these ideas for the first time in practice. To this end we evaluate

on large, real-world programs written in a variety of popular languages. A significant

challenge lies in recognizing and transforming syntactically-diverse languages for such an

approach to work. Our technique for declarative multi-language transformation in Chapter 2

addresses this challenge and forms the basis for operationalizing our approach. We address

analysis issues broadly by considering (a) user-reported false positives across multiple active

analyzers and (b) historic user commits for suppressing analysis warnings. We develop

useful transformations that best tailor to real analyzer issues at hand. Transformations

can thus be semantics-preserving or semantics-altering, address shortcomings or oversights

in analysis implementation, or improve analysis precision by altering how functions are

modeled. We demonstrate the effectiveness of our approach by contributing the following:

• We operationalize the process of tailoring programs for static analysis using declarative

syntax rewriting.

• We develop 16 transformation templates for improving the analysis output of five

modern and active analyzers (Clang, Infer, PHPStan, SpotBugs, and Codesonar) We
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show how our approach resolves real (including yet-unresolved) false positive issues

affecting users.

• We demonstrate our approach on 10 real-world projects (including large ones, >100KLOC)

across three languages: PHP, Java, and C.

• We show that our approach is efficient. Transformation typically takes one to three

seconds (compared to analyses that typically take in the order of minutes); our

approach is sufficiently performant to integrate into existing continuous integration

and analysis pipelines.

• We show that our approach improves static analyses by reducing the number of false

positives without adversely affecting other results. In aggregate we remove 107 false

positive reports with a median of 2 false positives is removed per project.

3.2 Motivation

Figure 3.2a illustrates a past issue in PHPStan, a popular PHP analyzer. A file is opened in

line 2, and assigned to a handle $file inside the if-condition on line 2. If opening the file

fails, $file is assigned the value false, the condition evaluates to true, and the function

immediately returns (line 3). On the other hand, if execution passes the check then $file

is guaranteed to be valid (i.e., not false). The problem is that PHPStan does not track the

effect of assignments in if-conditions, and reports an error saying that $file may be false

when passed as an argument to fputcsv on line 7.

The issue for this false positive stayed open and unresolved for over a year on GitHub,

and is cross-referenced in 13 related user-reported issues.4 One project member responded

that the issue is important and will be fixed in the future, but that “no one has yet figured out

how to implement it without rewriting major part of the (analysis) core.” The fix imposed

4https://github.com/phpstan/phpstan/issues/647.
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� �
1 function test(): void {
2 if (( $file = @fopen('file', 'wb+')) === false) {
3 return;
4 }
5
6 // analyzer complains that $file may be false
7 if (\ fputcsv($file , [1,2,3]) === false) {
8 \fclose($file);
9 return;

10 }
11 ...
12 \fclose($file);
13 }� �
(a) Assigning the result of fopen to $file in Line 2 confuses the analyzer. It misses the effect
that $file is not false on Line 7, and emits a false positive warning that $file may be false when
passed to $putcsv.� �
1 function test(): void {
2 $file = @fopen('file', 'wb+');
3 if ($file === false) {
4 return;
5 }
6 ...
7 }� �
(b) An analysis user proposed this workaround: extract the assignment out of the conditional.
This allows the analyzer to correctly track the assignment effect and does not emit a false positive.
Unfortunately this approach is hard to blanket apply automatically and diverges from developer
preferences who prefer this style for readability.

Figure 3.2: Variable assignment inside if-statements can cause a false positive report in
PHPStan. A workaround is to put the assignment outside of the if conditional.
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significant effort on analysis authors which delayed a resolution for months. Although some

analysis authors were in favor of code that avoided assignments in conditionals, others found

the style improves readability. Multiple users noted that the false positive can be avoided by

a code change that extracts the assignment out of the conditional (Figure 3.2b).5 However,

one user also noted that this workaround was “a bit annoying” because it introduced

redundancy. The proposed workaround also imposes a burden on the user to identify and

refactor all affected instances.

Our approach introduces a new way to address these tensions. The intuition is that

workarounds via code changes, as in Figure 3.2b, can generalize to cater for individual

user preferences and overcome long-standing analysis issues. The high level idea is to write

simple, declarative syntactic templates that can blanket apply automatically over an entire

code base. Although the code changes could be persisted in the code, they need not be:

our approach foremost promotes code changes as a temporary suppression mechanism with

respect to a particular analysis. In our approach, a match template (as in Section 2.2)

specifies a pattern that is syntactically close to the problematic pattern in Figure 3.2a:� �
if ((:[v] = :[fn](:[args])) === false)� �
A rewrite template replaces all instances of the match template, extracting the assignment

out of the if-condition. The rewrite template is syntactically close to the pattern suggested

by the user in Figure 3.2b:� �
:[v] = :[fn](:[args]);
if (:[v] === false)� �
The match template matches on the syntactic pattern where variable v is assigned the

return value of calling a function fn with arguments args. As before, all other syntax is

matched concretely ; whitespace in the template matches all contiguous whitespace in the

source code. For illustration we use this template to match on function call syntax because

the analysis particularly tracks values for modeled functions like fopen.
5https://github.com/phpstan/phpstan/issues/1739
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Using the above patterns we identified and rewrote 27 instances of the if-assign pattern

in the WordPress and PHPExcel projects and removed 82 false positives due to issue #647

in PHPStan. Our approach has the positive effect of removing more false positives than

matches, because the issue has a cascading effect of inducing false positives along multiple

execution paths (we elaborate in Section 3.4).

Writing these declarative patterns is easy compared to implementing additional analysis

reasoning, and sufficiently general to overcome analysis shortcomings. The format of

syntactic templates is accessible to developers; indeed, templates can be written in a

format that is syntactically close to user-identified and user-implemented workaround

transformations (as in Figure 3.2b). In our experience, complex changes to an analysis

implementation can have a correspondingly easy resolution via code transformation patterns;

templates can be developed in minutes for issues that take days to months to resolve in

an analysis implementation (or even issues without any proposed solution whatsoever).6

Notably, our declarative approach allows to write simple replacement patterns that express

nontrivial syntactic properties that go beyond the capabilities of regular expression search-

and-replace. This ability enables the program tailoring approach, because we can target

rich syntactic patterns and transform these toward the objective of improving analysis

fidelity.

3.3 Approach

This section explains the overall process of our program tailoring approach. Section 3.3.1

briefly reviews matching behavior as it pertains to templates in this chapter. Section 3.3.2

explains how we integrate program transformation for improving the quality of analyzer

bug reports and the principles behind our approach.

6See, e.g., https://github.com/spotbugs/spotbugs/issues/493
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3.3.1 Match Template Behavior

We uses Comby for declaratively rewriting syntax with templates (cf. Chapter 2). Matching

behaves as follows:

• The :[hole] syntax binds matched source code to an identifier hole. Holes match all

characters, including whitespace, lazily up to its suffix, but only within its level of

balanced delimiters.

• ":[hole]" (inside string quotes) matches strings within those quotes.

• :[[hole]] matches only alphanumeric characters in source code, similar to \w in regex.

• All non-whitespace characters are matched verbatim.

• Any contiguous whitespace (spaces, newlines, tabs) in a match template matches any

contiguous whitespace in the source code. Match templates are thus sensitive to the

presence of whitespace, but not the exact layout (the number of spaces do not need

to correspond exactly between match template and source code).

• Matching is insensitive to comments in the source code. Comments are treated like

whitespace when matching non-hole syntax in the match template.

In addition, we use rules to refine match and rewrite conditions. As before, rules specify

optional predicates on matched syntax, such as equality of variables. We elaborate on

rules as needed in the rest of the chapter. The match template, rewrite template, and rule

comprise the full input for a single transformation. Each part is passed on the command-line.

3.3.2 Tailoring Programs for Analysis

This section explains our approach to tailoring programs for analysis. Figure 3.3 illustrates

the main phases in our approach; we use it to characterize the process in detail.

Who writes templates? Our approach starts with a manual step where users 1 write

transformation templates. A key principle of our approach is to allow particularly analysis
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Figure 3.3: Overview of the program tailoring process.

users to influence static analyses via program transformation. The simplicity of declarative

templates makes syntax transformation accessible, so that user observations and workarounds

(as in Figure 3.2b) can be straightforwardly implemented. This primitive is not exclusive

to analysis users, but also accessible to analysis writers and external contributors. For

example, analysis writers can create and distribute transformation templates for issues

on an interim basis (such as for Figure 3.2a). Users can then apply these templates as a

temporary workaround before analyzing their projects. In this dissertation, we (the author)

develop and evaluate transformations as an external contributor—we treat analyses as

a black box (as a user would) and develop transformations for extant issues in popular

analyzers (as an analysis writer might).

What properties do templates have? Writing rewrite templates 2 is a one-off exercise

per transformation. Templates are generally short (we develop templates that are between

3 and 15 lines long). Our results show that there is typically a one-to-one correspondence

of rewrite template to analysis issue, where an analysis issue can entail a general problem

in analysis implementation, code generation, or function modeling. Formulating rewrite

templates requires competitively low effort compared to implementing complex changes

analysis-side.

Templates are customizable. For example, we can refine the template if ((:[v] =
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:[fn](:[args])) === false) to match on a particular concrete function, such as fopen,

instead of :[fn]. Rudimentary mechanisms (e.g., C macros, comments, or assertions [87],

and bug auto-patching [4]) have been used and recommended for suppressing false positives

in existing analyzers [3, 6]. These mechanisms suffer from relying on language-specific

features, are brittle and coarse, and built into the tool or hardcoded in the program. Our

template-based mechanism is broadly accessible (it is easy to write templates), customizable,

and generic across languages for manipulating syntax. It operates independent of language

toolchains, does not presume the availability of language-specific features (e.g., macros),

and does not prescribe any configuration for external analysis tools or compilers. Templates

currently express purely syntactic properties (we cannot, e.g., draw on type information to

inform manipulation). However, future work can incorporate richer semantic information

(Section 6.2.5).

A set of templates form a catalog of transformations that can be reused across projects

that use analysis. A catalog is the starting point for an automated pipeline, driving the

remaining phases in Figure 3.3. In this chapter, we present a catalog of human-written

templates that directly targets known analysis issues. We note the especially interesting

potential for automating template generation in 2 (e.g., by mining code patterns for

inferring templates), which we discuss in future work (Section 6.2.3).

What are the principles behind automated code changes tailored to analysis?

The rewriter 3 takes as input the set of rewrite templates and a program. It rewrites

matched syntax in the original program to produce a modified program that will be analyzed.

The modified program is intended to be a temporary representation of the original program

that is discarded after analysis. In practice, users can identify transformational workarounds

to issues (as in Section 3.2), but may not want to persists those changes in their code.7 We

implement temporary program modification by running the rewriter on a version controlled

7A different user experience states: “Changing the property gets rid of the false positive, but that’s not
what I want” – https://github.com/Microsoft/CodeContracts/issues/255.
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project (we use git). After running the analysis and capturing the bug reports, the project

is reverted to its original state. Syntactic rewriting is fast; less than 4 seconds to process

an 800KLOC project, and introduces negligible overhead compared to analysis runtime.

This chapter considers transformations primarily as a targeted suppression mechanism

for analysis false positives. However, we observe that transformations can also be tailored

to surface additional true positive bugs (e.g., as an effect of performing automated program

repair, which we consider in Section 3.4).

The rewriter can be seen as a preprocessor for analyses. One principle of running our

approach prelude to analysis is that we can dually use templates to search for and detect

(but not necessarily rewrite) problematic syntactic patterns. This mechanism provides

an early smoke signal for patterns that may trip analyzers even before the analysis runs.

We notably reuse our templates to detect false positive-inducing patterns across projects

in our evaluation. Large scale efforts can similarly detect the extent of possibly affected

projects when adopting a new analyzer; analysis writers may use it to prioritize analysis

fixes. These capabilities are notable in contrasting our approach to existing mechanisms.

Syntactic templates are valuable in explicitly codifying sensitivities of analysis behavior

as it relates to program structure, whereas suppression-by-comments and configuration

options provide an escape hatch in anticipation of problematic analysis interactions where

program structure is readily ignored.

Automated program transformation is a powerful primitive, and applying incorrect

templates can produce malformed programs. When developing templates, it is helpful to

impose validation criteria for running the analysis on the modified program.

What are the conditions for analyzing a modified program? Analyses generally

accept only well-formed programs (in the respective language), and typically rely on building

artifacts or instrumenting compiler output to perform analysis. Language allowing, we

impose a validation step that all modified programs must compile 5 when performing
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analysis, which provides additional assurance that the analysis will not terminate early due

to malformed programs. For PHP, we rely on a valid parse of target files as the validation

step. Applying transformations may violate style checkers (e.g., linters) integrated into a

build manifest, or cause spurious compiler warnings (e.g., unused variables), but still allow

the program to compile successfully. We allow such violations or warnings; in our results,

these do not directly affect the fidelity of the analysis with respect to the issue targeted by

transformation. Another possibility of interference is that transformations addressing one

bug class may report bugs in a different bug class (e.g., a transformation may introduce a

dead store). This undesirable behavior depends on the analysis checks, its configuration,

and template formulation. We qualify such cases during our experiments concretely in

Section 3.4.

In the final step we capture analyzer output for the modified program 6 . The goal of

our approach is that this output provides a higher quality bug report than that obtained

from running the analyzer on the original program.

3.4 Evaluation

This section describes our results tailoring programs for analysis. Our evaluation emphasizes

real-world applicability on large and popular programs for modern analyzers. Section 3.4.1

describes our experimental setup. Section 3.4.2 describes our results applying 16 rewrite

templates to 10 projects across 5 analyzers. We discuss further considerations and limitations

in Section 3.4.3.

The goal of our evaluation is to show that programs can be tailored generically and

declaratively to improve analysis output. We focus on breadth of applicability across

languages and analyzers for real-world issues. Thus, our research questions are:

RQ. 1 Can tailoring programs improve the fidelity of static analysis reports?

Specifically: Does the approach remove false positive reports without otherwise
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Analyzer Lang Pattern Project KLOC Time Issues #R RefAnlyz Rewr Bef Cls ∆ FP

PHPStan PHP

if-assign-resources WordPress 5.7 2.5s 0.3s 112 44 -44 16 647PHPExcel 5.1 0.7s 0.1s 113 38 -38 11

substr-model

dompdf 3.9 0.5s 0.2s 34 1 -1 1

1215matomo 0.3 0.2s 0.1s 21 1 -1 1
PHP_CodeSniffer 1.6 1.1s 0.1s 123 3 -3 3
neonizer 0.1 0.1s 0.1s 1 1 -1 1

Infer

C free-model OpenSSL 402.9 17m29s 1.6s 462 22 -6 3,735 120

Java create-socket Drift 50.7 2m47s 1.0s 62 1 -1 1 781Presto 813.0 39m20s 3.3s 822 106 -1 1

wrapped-resources hazelcast-jet 103.8 5m24s 1.3s 29 7 -2 16 999

SpotBugs Java null-on-resources hazelcast-jet 103.8 1m48s 2.0s 1 1 -1 45 756Santulator 11.1 44s 0.5s 2 2 -2 8

Clang SA C const-strcmp rsyslog 145.0 16m20s 2.9s 3 3 -3 10 ea74

CodeSonar C strncpy-null swoole-src 96.8 6m40s 0.6s 117 1 -1 1 —snprintf-null ioping 1.2 0m14s 0.2s 12 2 -2 2

Table 3.1: Main results of our approach. Each row represents an application of a transformation Pattern on a project. Issues, Bef is
the total analyzer warnings before transformation. Cls is subset of total analyzer warnings in the bug class that the transformation
targets. (∆ FP) is the number of warnings removed by the transformation for the targeted bug class. Ref is the external GitHub
issue or commit reference. Time, Anlyz is the time to run the analyzer on each project (given in thousands of lines of code, KLOC).
Rewr is the time to process and rewrite each matching pattern across KLOC. We remove 107 false positives (∆ FP) in total, with a
median of 2 per project.
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adversely affecting the analysis results?

RQ. 2 Does the program tailoring approach generalize? Specifically, we evaluate

generality with respect to multiple languages and analyzers, and pattern reuse

across projects.

3.4.1 Experimental Setup

We consider five popular analyzers: PHPStan [7] for PHP, SpotBugs [8] for Java, Clang Static

Analyzer [1] and CodeSonar [2] for C, and Infer [5] for both Java and C. All analyzers are

mature, actively used, and incorporate state-of-the-art techniques. All analyzers are open

source, except for CodeSonar which is a commercial analyzer.8 For each analyzer we were

interested in current or long-standing issues that cause spurious warnings or false positives,

and particularly issues that could not be easily addressed by analysis configuration or

suppression mechanisms:

1. We searched the PHPStan, SpotBugs, and Infer issue trackers on GitHub for reports

or comments containing the words “false positive”.

2. We found related issues for the Clang Static Analyzer (which does not have a GitHub

issue tracker), by searching for GitHub commits containing the words “clang static

analyzer false positive”.

3. CodeSonar does not have a public issue tracker, nor did we find public commits

referencing false positives. We manually inspected warnings for false positives.

The above methods influenced project selection. For (1) we identified problematic syntax

patterns and user-affected projects from user reports. For (2) we identified committed code

changes in an existing project and used this to develop a generic template. For (3) we

selected popular C projects as representative real-world projects (since we did not have

sources indicating false positives in CodeSonar a priori).

8We used CodeSonar under a free academic license.
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The templates we developed from these sources can apply generally across projects.

We thus reused our templates to search for additional projects containing potential false

positive-inducing patterns in a large-scale search. We searched over the top 100 most

popular9 projects for each language. However, to apply our approach generally, we require

that a project (a) compiles (or parses) successfully and (b) is configured for analysis. Many

of the projects identified by large-scale search presented significant manual burden to

compile (e.g., due to various dependencies and platform-specific requirements like Android,

iOS, or Visual Studio) and consequently configure for analysis. We note that this burden is

amplified for external users (such as ourselves) who have limited access to various platforms

and who are unfamiliar with specific build configurations. We generally expect the burden

to be less of an impediment when our approach is used by project maintainers, who are

familiar with the complexities of their own projects.

Our selection ultimately represents a convenience sample of real-world issues to substan-

tiate our claims about tailoring programs to overcome analyzer limitations. The selection

includes issues that affect real developers of large, popular codebases. We show that our

approach is efficient and scales to these concerns, and that it presents potential for reuse

across projects through large-scale search.

We ran our large-scale search experiments on an Ubuntu 16.04 LTS server, with 20 Xeon

E5-2699 CPU cores and 20GB of RAM. We evaluated analysis improvement on the same for

large projects (>100KLOC) and the CodeSonar analyzer. All other analysis improvement

experiments were run on an Ubuntu 16.04 VM with two 2.2 GHz i7 CPU cores and 4GB

RAM.

9Ranked by the number of user favorites (GitHub stars) in July, 2019.
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3.4.2 Experimental Results

Table 3.1 shows our results for each analyzer. We develop transformations for 16 syntactic

Patterns across PHP, Java, and C projects. The Issues column shows the total number

warnings across all bug classes in the Before column (each analyzer is run with its default

checks). We ran each analyzer on the entire project (warnings are thus for the entire project)

except for PHPStan where the number of warnings is reported for a single file. PHPStan

can operate at the file level, and using targeted transformation we demonstrate that our

approach can isolate issues in individual files without incurring a project-wide analysis.

The Cls column is the subset of all bugs that fall into the bug Class that the pattern

targets. The ∆ FP column is the number of false positives removed for that bug class by

transformation. The #R column is the number of rewritten instances in the source code

for each pattern. There may be more or fewer rewritten instances compared to removed

false positives due to the effect of transformations on analyses (cf. pattern free-model

and if-assign-resources); we elaborate below. The time to transform the program (Time

Rewr) is negligible compared to analysis runtime (Time Anlyz). In aggregate these

transformations remove 107 false positives (∆ FP) out of a total of 253 reports within the

targeted bug class (not all of which are false positives). A median of two false positives are

removed per project.

Effects of transformations on analysis behavior.

Providing a primitive for arbitrarily modifying programs means that our approach can

hypothetically introduce adverse effects which do not exist in the original program. The

negative possibilities are that a change either removes true positives in the original program,

introduces more false positives in the modified program, or both. We evaluated whether

our patterns cause such adverse effects by manually inspecting bug reports before and

after applying a transformation for every analysis run. From our inspection, no true
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positives are removed for any project. No additional bug reports are introduced for any

project, except OpenSSL and Presto. Infer nondeterministically reports different numbers

of bugs for large Java projects in the case of Presto, irrespective of whether we perform

a change. We confirmed that our change removes the false positive on five independent

runs; nondeterminism for large numbers of bug reports (>800) make it difficult to conclude

whether our change has any meaningful effect on other reports.

We observed that Infer reports an additional 6 potential null dereferences after applying

the free-model pattern. This is interesting because the free-model pattern targets

memory leak false positives, not null dereference reports. Interestingly, Infer analyzes and

reports bugs in functions after transforming the program, whereas it previously short-circuits

analysis and reporting for functions containing free-wrapper functions. We inspected these

reports and could not obviously discern whether they were false positive or true positive

reports.

In summary: Our approach removes false positives without adversely effecting the

analysis in the majority of cases (13 out of 15 projects), while two projects are inconclusive.

In general, program tailoring is effective because transformations perform small, local

changes that affect only the reasoning of the analysis for that instance or bug class. It

follows that changes which are closely semantics-preserving of the original program ought

not make an analysis less precise, and our results affirm this intuition.

Amortizing human effort for codifying and detecting patterns.

Pattern reuse is an especially appealing property of tailoring programs. We developed

four patterns from user-reported issues in a single project10 which we then used to detect

and fix multiple false positive issues in six additional independent projects. These results

show that patterns may generalize to benefit multiple projects, and imply that the cost

and human effort of writing broadly applicable templates can be amortized across software
10if-assign-resources, substr-model, create-socket, and null-on-resources
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Language MLOC Pattern # Matches Time

PHP 8.9 if-assign-resources 42 18s
substr-model 6 20s

Java 16.2
create-socket 1 56s
wrapped-resources 254 30s
null-on-resources 4 35s

C 29.4

free-model 52,461 7m
const-strcmp 91 48s
strncpy-null 1 48s
snprintf-null 13,763 50s

Table 3.2: Large scale search results over the top 100 most popular PHP, Java, and C repositories
on GitHub. MLOC is the millions of lines of code searched; # Matches is the number of
matching instances across all projects. Search is fast and scales to millions of lines of code for rich
patterns.

stakeholders (i.e., both analysis users and analysis writers develop, distribute, and benefit

from patterns). In contrast, existing mechanisms using comment suppression or command

line options cannot likewise generalize, and consequently induce recurring developer effort.

We performed a large-scale search using each pattern to identify the additional projects

above, and to quantify overall efficiency.11 Table 3.2 shows our results running each pattern

on the top 100 most popular GitHub repositories for PHP, Java, and C. In general search is

fast and can identify potential false-positive inducing patterns before an analysis even runs.

The accuracy of this approach depends on the template specificity, analysis behavior,

and project-specific conventions. For example, we saw that the free-model pattern

works well for the OpenSSL project, which uses a convention of custom free-wrapping

functions. Naturally, this convention may not hold in other projects among the 52 thousand

matches found by our search. On the other hand, we developed the substr-model using

a user-reported issue for a single project (neonizer) and discovered five other matches in

three additional projects, all of which cause real false positives in PHPStan, and which the

transformation suppresses.
11Note that the patterns identified projects which failed to run under the analysis or compile, and hence

not included in Table 3.1.
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Fixed? Issue Duration Reported # Refs

3 phpstan/647 1 yr. 3 mos. 11-2017 16
7 phpstan/1215 1 yr. 1 mo. 07-2018 1
7 infer/120 4 yrs. 1 mo. 06-2018 4
7 infer/781 1 yr. 9 mos. 10-2017 0
7 infer/999 10 mos. 09-2018 0
7 spotbugs/756 11 mos. 09-2018 41

Table 3.3: Summary of false positive issues in active analyzers. A 7 in the Fixed? colum indicates
that the issue is still unresolved at the time of writing. Only one of the issues is currently resolved
(3). On average, the issues in our experiments have stayed unresolved for 1 year and 7 months
(aggregated over Duration as of the date the issue was Reported). # Refs indicates the number
of additionally cross-referenced issues for a report (including, e.g., duplicate user reports or external
tools affected by this issue).

Issue duration and resolution for analysis end users

Table 3.3 characterizes six open source issues that our patterns address.12 Interestingly,

issues are long-standing (unresolved for over a year, on average), and all but one remain

unresolved.13 These issues generally reveal that analysis end users are subject to long

delays and lack of support, having little recourse for resolving false positives using existing

mechanisms. On the one hand, analysis writers may not have the time to support user-

or project-specific needs, and may deprioritize less pressing requests (e.g., infer/781 is an

individual user request with no cross-references to other issues). On the other hand, an

issue may affect many users (as shown by multiple cross-referenced issues for phpstan/647,

spotbugs/756), but be very complex to solve for analysis maintainers.

Our approach gives agency to end users for implementing workarounds. Furthermore,

user-reported errors can be significantly more severe than other analysis reports as they

may break existing software workflows. For example, even a single false positive report in

SpotBugs due to null-on-resources breaks the continuous integration (CI) build of cross-

referenced projects, and caused users to disable the check wholesale for their projects across

12The three remaining patterns, rsyslog, and those for CodeSonar, do not have open source issues.
13In October, 2019.
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Match template� �
if ((:[v] = @fopen(:[a])) == 0)� �

Rewrite template� �
:[v] = @fopen(:[a]);
if (:[v] === false)� �

Figure 3.4: The if-assign-resources pattern extracts a variable assignment out of an if-conditional
(in this case for fopen calls).

all versions of Java.14 Because of this profound effect, bug severity and build integration

must be weighed into analysis configuration mechanisms. Moreover, although the relative

size of false positive reduction is small for some reports in Table 3.1, the correspondence to

real-world issues and extended impact on end users and software workflows make the false

positives we handle more significant than other false positives. Our results show that our

approach can uniquely address such complexities.

Rewrite patterns

We now discuss analyzer issues in greater detail, explain what our transformation does

to resolve the issue, and why this transformation induces a positive change in analysis

behavior.

Pattern: if-assign-resources. This pattern addresses the issue of variable assignment

in if-conditionals (as introduced in Section 3.2). At the original time of writing PHPStan

did not accurately track the effects of such assignments, and it took over a year to fix in

the analysis implementation. False positives particularly manifest for cases where states of

resources (like files) are opened. Because PHPStan does not track that the variable assigned

cannot be false, it reports an error when the variable is passed to a function such as fwrite

or fclose, saying “Parameter #1 of function fclose expects resource, resource|false

given”. The transformation pulls the assignment out of the if-conditional, which allows

PHPStan to accurately track the effect (Figure 3.4). An interesting result is that rewriting

this pattern can remove many false positive reports because multiple functions may use a

14See, e.g., https://github.com/confluentinc/ksql/pull/2144.

75

https://github.com/confluentinc/ksql/pull/2144


Match template� �
$:[[v]] = substr(:[a]);
if ($:[[v]] === false)� �

Rewrite template� �
$:[[v]] = substr(:[a]) || isset($maybe_false);
if ($:[[v]] === false)� �

Figure 3.5: The substr-model pattern informs PHPStan that a call to substr may return false.

file resource along multiple paths, and each use raises an error. For example, rewriting 16

cases in WordPress removes 44 false positives.

Pattern: substr-model. The substr function in PHP performs a substring operation.

PHPStan models return value types of functions like substr. However, PHPStan did not

track the fact that substr may return false if the length of the string is shorter than the

requested substring range. PHPStan, thinking the value can only ever be a string, thus emits

a false positive when a user’s code checks whether the return value of substr is false, saying

“comparison using === between string and false will always evaluate to false”.

It took eight months as of the first user report for maintainers to implement the solution

properly. It is particularly interesting that the maintainers were unwilling to make a simple

change to the function model to reflect that substr can return false, because it would

propagate spurious warnings when used as an argument in other contexts. However, users

primarily had issues with the model when they checked return values, not when the value

was used as an argument. Our transformation in Figure 3.5 matches problematic cases that

users experienced while avoiding the difficulty of changing the substr model wholesale. We

introduce the expression isset($maybe_false) which lets PHPStan reason that the return

value of an unset variable may be false. Statements that assign the result of substr before

an if check are changed with an or-clause, which effectively remodels the substr call to

possibly return a false value. Note that the use of :[[v]] in the assignment statement

(line 1) and conditional expression (line 2) of the match template introduce a constraint

that both matching instances must be syntactically equal for the rewrite rule to fire. This

pattern removes six false positive reports in four PHP projects.
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Match template and rule� �
:[[f]](:[args])� �� �
where match :[args] with
| ":[_],:[_]" -> false
| ":[_]" -> true� �

Rewrite template and rule� �
:[[f]](:[args])� �� �
where rewrite :[f] with
| ":[_]free" -> "free"� �

Figure 3.6: The free-model pattern renames custom XXX_free functions to just free. It first
matches all function calls, then filters calls that have only one argument using the where match
rule. It then rewrites satisfying calls that contain the letters free using the where rewrite rule.

Match template� �
:[[sock]] = :[_].createSocket(:[[sock]], :[_], :[_], true);� �
Rewrite template� �
:[[sock]].close();
:[[sock]] = new Socket ();� �

Figure 3.7: The create-socket pattern removes an unmodeled createSocket constructor that
wraps a socket, and replaces it with an explicit, modeled sequence where the socket is closed and
created again. The last argument in the match template (which implies the socket will be closed
automatically) must be true in the original source for this rule to fire.

Pattern: free-model. Infer may timeout when analyzing functions and fail to summarize

their effect. Infer reports false positive memory leaks when it fails to realize that a function

frees memory—this happens particularly when the C library free call is wrapped inside

custom free functions. The OpenSSL project follows the convention of wrapping free calls

in functions like OPENSSL_free, which Infer fails to analyze. As an approximation of these

custom free functions, our transformation (Figure 3.6) rewrites the wrapping functions to

call the plain C library free version. OpenSSL compiles successfully despite transforming

3,583 calls, and removes 25 false positives because Infer can then track the effect of free on

memory. The remaining memory leaks are unrelated to free calls.15

Pattern: create-socket. The createSocket(socket, ...) call is typically used in con-

junction with the Java SSL library. It returns a server socket that wraps an existing socket

15These are also likely false positives, though we did not investigate fully.
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Match template� �
try (:[[o]] :[[v]] = new :[[c1]](new :[[c2]](:[args])))� �

Rewrite template� �
:[c2] wrapped = new :[c2](:[args]);
try {

wrapped.close ();
} catch (IOException e) {}
try (:[o] :[v] = new :[c1](wrapped))� �

Figure 3.8: The wrapped-resources rewrites the Java try-with-resources pattern where con-
structors wrap a file descriptor. The pattern closes the inner resource so that Infer stops tracking
it (and stops it from reporting a leak.

in the first argument. The last argument, when true, tells the call that the underlying socket

should be closed when the returned socket is closed. Infer fails to model the createSocket

call, and a false positive report states that the underlying socket is leaked. The boolean

toggle in the last argument makes this function difficult to model generically.

Interestingly, a user reports a false positive for a particular case where the last argument

is always true. Our transformation (Figure 3.7) addresses the issue by simulating the close

operation early, and simply returning a fresh socket for Infer to track. Note that we would

never persist this change in practice as it loses the implementation details of createSocket;

however, it is sufficient for making the analysis more precise. This pattern removes two

false positive reports in two Java projects; no resolution has yet been proposed in the Infer

issue tracker.

Pattern: wrapped-resources. Java 7 introduced the try-with-resources statement which

automatically closes a resource after the block executes, preventing a leak. Infer reports a

false positive leak when a resource constructor is nested inside another resource constructor

within a try-with-resources statement (this happens, e.g., when passing a FileInputStream

to an InputStreamReader). The underlying problem is similar to pattern create-socket:

Infer fails to track that the wrapped resource will be closed. We use a conceptually similar

transformation as in create-socket, but account for the syntactic variation introduced by

78



Match template� �
try (:[x] :[[v]] = :[expr]) {

:[body]
}:[rest]� �� �
where match :[rest] with
| " catch" -> false
| " finally" -> false
| ":[_]" -> true� �

Rewrite template� �
:[x] :[v] = :[expr];
try {

:[body]
} finally {

if (:[v] != null) {
:[v].close ();

}
}
:[rest]� �

Figure 3.9: The null-on-resources rewrites a Java try-with-resource statement to a more
traditional try-with statement. This avoids a redundant null-check injected by the compiler in Java
versions 11 and 12, which leads to an analyzer warning. The match rule ensures that matches pass
only if there does not already exist a catch or finally clause after a try-with-resources statement.

try-with blocks (Figure 3.8).

This transformation suppresses two false positive instances in one Java project. A

solution in the Infer issue suggests modeling the constructor classes to automatically

close the wrapped resource. Unfortunately, this may be insufficiently precise and the issue

remains unresolved.

Pattern: null-on-resources. SpotBugs reports a redundant null check on resources

inside try-with-resources statements (i.e., a resource is null checked after being previously

dereferenced).16 However, the error is only reported for code compiled with Java 11 and

12, and not Java 10. The reason is pernicious: the Java compiler in later versions inserts

a null check in the bytecode which does appear to be indeed redundant. From the user’s

perspective, however, the report is a false positive—no null check is visible in the source

code. The issue is cross referenced by over 10 projects, and remains unresolved for over a

year. Various projects have added annotations or disabled the check completely. No official

solution has been proposed.

Our approach presents a fresh alternative using the transformation in Figure 3.9, which

converts a try-with-resources statement to a traditional try-catch-finally block. In effect,

16Note this bug is orthogonal to wrapped-resources.
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Match template� �
if(strcmp(:[1], ":[2]"))� �

Rewrite template� �
const char *const t1 = ":[2]";
if(strcmp(:[1], t1))� �

Figure 3.10: The cons-strcmp pattern rewrites cases of strcmp so that constant strings in the
second argument do not trigger macro expansion, thereby suppressing the false positive report.

Match template� �
strncpy(:[dst], :[src], :[len]);
if (:[len] :[rest]) { :[dst][:[idx]] = 0; }� �
Rewrite template� �
strncpy(:[dst], :[src], :[len] - 1);
:[dst][:[len] - 1] = '\0';
if (:[len] :[rest]) { :[dst][:[idx]] = 0; }� �

Figure 3.11: The pattern strncpy-null pattern. This transformation fires when the destination
buffer dst1 has the same name as the buffer dst2 that is null-terminated subsequently, and the
conditional check using len2 is dependent on the length len1 used in the call.

we normalize the try-with-resources syntax across Java versions to sidestep the null-check

generation that only happens for Java versions 11 and 12. This suppresses three spurious

bug reports in two of the projects we evaluate; it is interesting to note that only a fraction

of the rewritten patterns (3 out of 53 cases) in fact trigger the SpotBugs warning.

Pattern: const-strcmp. The Clang Static Analyzer may report a potential out-of-bounds

access when comparing strings with strcmp. This only happens when macro-expansion

(defined in glibc headers) is triggered, in this case by the fact that a string literal is passed

in the second argument to strcmp. Although analysis writers try to suppress warnings

raised by macro expansion, manual build steps for projects may bypass the suppression

mechanism. The transformation in Figure 3.10 extracts the string literal in the comparison

to a string const, causing the analyzer to see a strcmp C library function rather than

analyzing the macro expansion.

Pattern: strncpy-null The C strncpy function does not necessarily null-terminate its

destination buffer, which can lead to memory corruption. CodeSonar warns about this
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� �
1 static char *php_ssl_cipher_get_version(const SSL_CIPHER *c, char

*buffer , size_t max_len) {
2 const char *version = SSL_CIPHER_get_version(c);
3 - strncpy(buffer , version , max_len);
4 + strncpy(buffer , version , max_len - 1);
5 + buffer[max_len - 1] = '\0';
6 if (max_len <= strlen(version)) {
7 buffer[max_len - 1] = 0;
8 }� �
Figure 3.12: A warning is emitted at line 4, where strncpy may not necessarily null-terminate
buffer. It is a false positive: the buffer is always null-terminated in the case where max_len
characters are copied. Our transformation makes the null-termination explicit to suppress the
warning.

possibility, but also notes that if a subsequent statement definitely null-terminates the

string, then the warning can be ignored. We found that the warning was indeed a false

positive in the swoole project: a subsequent check always null-terminates the buffer safely.

However, a possible reason why CodeSonar conservatively reported an error is that the

subsequent statement is guarded and was not considered safe (see line 10, Figure 3.12).

To avoid the false positive, our pattern checks whether a condition on the strncpy buffer

length terminates that same buffer with a null character (Figure 3.11). If so, the rewrite

unconditionally null terminates the buffer. Although this transformation is not generally

strong enough to match syntax that guarantees a null-terminated buffer, it does provide

flexibility for refining analysis warnings. For example, we found exactly the same pattern

using our template in the PHP source code, where it appears the php_ssl_cipher... function

was borrowed from.

Pattern: snprintf-null CodeSonar reports an “Unterminated C String” error when a

possibly unterminated string is passed to a function such as strcat. The analysis believes

a string may not be null-terminated when, for example, space is allocated in the heap but

not subsequently null-terminated. We identified two false positives where heap-allocated

memory for a string is null-terminated, but only because we know that the buffer starts

out with positive length and passes through snprintf which always null-terminates. The
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Match template� �
snprintf(:[dst], :[len], :[rest]);� �
Rewrite template� �
snprintf(:[dst], :[len], :[rest]);
if (:[len]) > 0) {

:[dst][:[len]] = '\0';
} else {

:[dst] = NULL;
}� �

Figure 3.13: The snprintf-null pattern models the possibility that the snprintf destination
buffer may be null if the length is zero (i.e., not positive.)

analysis introduces imprecision where it believes the string can be of zero length, but

does not, however, model the possibility that the buffer can subsequently be treated as a

null pointer when passed to snprintf. Our transformation (Figure 3.13) makes this result

explicit, which suppresses two unterminated string warnings.

3.4.3 Discussion

This section further characterizes considerations and limitations of our approach.

Do transformations adversely affect results? Providing a primitive for arbitrarily

modifying programs means that our approach can hypothetically introduce adverse effects

(e.g., other false positives) which do not exist in the original program. In our results we did

not observe adverse effects of our patterns. Most perform small, local changes that affect

only the reasoning of the analysis for that instance or bug class. It follows that changes

which are semantics-preserving, or closely semantics-preserving of the original program (e.g.,

if-assign-resources, const-strcmp, and snprintf-null) ought not make an analysis less

precise, and our results affirm this intuition.

We observed that Infer reports an additional 10 potential null dereferences after applying

the free-model pattern. This is interesting because we do not expect that changing free

functions should affect nullable properties of pointers. It turns out that Infer can continue
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analyzing functions after we transform the program, whereas it previously short-circuits

analysis for functions containing free-wrapper functions. We did not confirm the validity

of the additional null dereference warnings (as these are orthogonal to memory leaks), but

note that transformations can improve analysis coverage (though not necessarily precision)

for other bug classes.

True positive warnings in the modified program may appear at different lines compared

to the original program. As a usability concern, affected lines in the modified program should

map to those in the original. This is primarily an engineering concern, as transformations

keep track of precise changes in offsets so that no information is lost.

Pattern development. We found that developing patterns can take a few iterations to

refine until they precisely match syntax of interest. For example, we iteratively added

constraints in the null-on-resources pattern to filter out try statements that already con-

tained catch and finally statements (without this constraint we would generate malformed

programs). We expect users of our approach to similarly develop patterns incrementally.

This process is analogous to existing practice at Google where analysis writers tune checks

based on results from running over the Google codebase [186].

Tailoring applicability and usability. Patterns may apply analysis-wide (e.g., substr-

model) or work best at a local project level (e.g., free-model is unlikely to apply to

all C programs). The particularity of patterns affects the size of false positive reduction.

For example, the create-socket pattern removes only one false positive of 106 resource

leaks reported by Infer. On the other hand, the size of false positive reduction is not

the only significant metric. For example, even a single false positive report in SpotBugs

due to null-on-resources breaks the continuous integration (CI) build of the projects

we evaluated, and caused users to disable the check wholesale for their projects across all

versions of Java. Because of this profound effect, bug severity and build integration must

be weighed into analysis configuration mechanisms; our approach presents a new way to
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cope with such complexities.

Analyzers on GitHub have numerous open issues related to “false positive” reports

(PHPStan has 32 open issues, Infer has 36, and SpotBugs has 38), and our approach can fall

outside the scope of these. For example, we may need type information to check whether

a method or object may cause a false positive. As our approach is syntactic, resulting

transformations do not guarantee, e.g., well-typed programs.

We note the compelling case for applying our technique in black box analysis settings.

Users of commercial analyzers, like CodeSonar, do not have agency over the closed-source

implementation or configuration options outside those provided by the distributor. Our

approach demonstrates a new way to fine-tune results that is complementary to black box

analysis.

True positive warnings in the modified program may appear at different lines compared

to the original program. As a usability concern, affected lines in the modified program should

map to those in the original. This is primarily an engineering concern, as transformations

keep track of precise changes in offsets so that no information is lost.

Automated pattern inference. We note that inferring transformations from historical

commits can reveal workarounds for false positives (as in the const-strcmp which we derived

from the rsyslog commit). Although an interesting opportunity, we note that a number

of our patterns perform changes that should only exist temporarily during analysis (free-

model, create-socket, and wrapped-resources), and inference thus presents limited

opportunity to learn such patterns. It is nevertheless an interesting avenue for future work.

3.5 Related Work

Program transformation has been used in various contexts to augment a procedure, technique,

or system. Harman et al. introduce the idea of testability transformation [107, 108] where

the goal is to transform a program to be more amenable to testing (e.g., by altering control
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flow) while still satisfying a chosen test adequacy criterion. Program transformation can

improve fuzz testing coverage and reveal more bugs [176] and enable new crash bucketing

strategies to accurately triage bugs [200]. Failure-oblivious computing [184] adds (for

example) bounds checking that allows programs to execute through memory errors at

runtime. We similarly develop source-to-source transformations; however, we focus on

improving analysis output fidelity. Our technique also aims to improve a static procedure

and thus must be fast enough to integrate into static workflows. Randomized program

transformation is an approach for testing static analyzers [77] and compiler internals, and

excels at finding bugs in optimization passes [85, 213]. Our approach differs generally from

these in using tailored program transformations to deterministically rewrite syntax.

Program transformation on intermediate representations (IR) can improve analysis

precision (e.g., by adding bounds on arrays [52, 74, 131]). Recent work formalizes the

impact of program transformations on static analysis in the abstract [162]; for example

3-address code transformation can introduce analyzer imprecision [144]. These works

adopt a predominantly semantic view of program transformations and their influence on

analysis; Cousot and Cousot develop a language-agnostic framework for reasoning about the

correspondence of syntax and semantics under transformation [75]. These ideas underlie our

intuition that semantic changes can improve analysis. However, abstract representations are

difficult for developers to manipulate. Our work promotes changing program syntax directly

as a proxy for inducing semantic changes that enhance analysis reasoning. In practice,

programs are difficult to generically transform [156]. Recent advances for transforming

multi-language syntax [199] however allows us to implement our approach in an efficient

and declarative manner.

In practice analyzers compromise on soundness [142] and implementation tradeoffs

manifest as implicit tool assumptions that are difficult to trace and modify [68]. Existing

work shows that analyzer configuration options and suppression mechanisms fall short of

developer needs in practice [67, 116]. Recent work by Gorogiannis et al. [99] emphasizes the
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value of reducing false positives over false negatives, where the objective is to never report a

false positive. In terms of this work, we introduce a new program transformational approach

for nudging analyzers to report fewer false positives while sidestepping the difficulties of

modifying analyzer implementations, assumptions, or configurations.

3.6 Summary

We introduced a new approach for effecting changes in static analysis behavior via program

transformation. Our approach uses human-written templates that declaratively describe

syntax transformations. Transformations are tailored to suppress spurious errors and false

positives that arise due to problematic patterns and limitations in analyzer reasoning. We

made the observation that analysis users have little agency over the format of analysis

configuration options provided to them, but that program transformation offers a fresh

primitive for leveraging influence over analysis behavior. To this end we showed that

manipulating concrete syntax can resolve diverse and long-standing issues in existing

analyzers, where configuration and suppression mechanisms fall short. Our evaluation

presents the first study for empirically validating this program transformational technique,

which we evaluated on active analyzers and large real-world programs.

At a high level, automated and selective program transformation presents a general way

to influence analysis behavior, and is not restricted to static analyses. In the next chapter,

we develop a new technique in a dynamic setting, this time demonstrating the capacity for

automated program transformations to produce high quality bug reports by deduplicating

crashing inputs generated through fuzz testing.
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Chapter 4

Semantic Crash Bucketing

In this chapter we present Semantic Crash Bucketing, a generic method for precise crash

bucketing via program transformation. In similar fashion to Chapter 3, we apply automated

program transformation to tailor programs; now, however, to better deduplicate crashes

produced by dynamic fuzz testing. Semantic Crash Bucketing maps crashing inputs to

unique bugs as a function of changing a program (i.e., a semantic delta). The insight is

to approximate real bug fixes with lightweight program transformation to obtain a precise

classification of unique bug reports. Our evaluation shows that approximate fixes are

competitive with using true fixes for crash bucketing, significantly outperforming built-in

deduplication techniques for three state-of-the-art fuzzers.

4.1 Introduction

The advent of large scale fuzzing services, such as Google’s OSS-Fuzz [23, 189] and Microsoft’s

fuzzing service [25], attest to the effectiveness of these automatic bug finding tools. When

operating at scale, accurately identifying unique bugs is critical for (a) reducing time

consuming manual debugging efforts [66, 178], (b) characterizing the effectiveness of

automated bug-finding tools [42, 66, 157, 182, 209], and (c) ranking interesting crashing
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test cases [66]. However, one outstanding challenge in effectively deploying automated

fuzzing techniques is accurately identifying unique bugs during crash triage. Fuzzers often

generate thousands of crashing inputs that ultimately correspond to the same bug [66], and

the sheer number of crashing inputs preclude manual inspection. This is a hard problem,

and an area of active research [76].

Automated crash triage techniques seek to approximately bucket multiple crashing (but

ultimately equivalent) inputs [66, 76, 157, 178], to reduce the number of redundant bug

reports an engineer must inspect by hand. At a high level, automated testing tools like

fuzzers and symbolic executors typically use tool-specific, heuristic bucketing strategies.

Both research and industry standard triage techniques have known limitations [76, 182].

Techniques may assume “best-effort” hardcoded values (e.g., the number of calls to consider in

a call stack [18]) or require tool-specific instrumentation for feedback-driven approaches [21].

The varied sensitivity of such ad hoc techniques result in imprecise bug identification that

can fail in two ways. Overapproximation occurs when multiple crashing tests caused by

a single bug incorrectly bucket to more than one unique bug (i.e., duplicate bug reports).

Underapproximation occurs when crashing tests due to multiple unique bugs are put in the

same bucket [178, 209] (i.e., missed unique bugs).

Stack hash [157, 209] and branch sequence [16] techniques used in state-of-the-practice

fuzzers [16, 18, 21] can suffer from both over- and underapproximation [178, 209]. Such

techniques seek to determine bug uniqueness as a function of, e.g., crashing input [209],

program traces [16, 76], program crash state [21], or a combination of these [66]. Recent

(and more sophisticated) research advances propose to more precisely classify unique bugs

using symbolic analysis [178], machine learning on crashing inputs [66], and backward taint

analysis on program traces [76]. While such approaches promise more accurate bucketing

by considering semantic program behavior (e.g., [76, 178]), their accuracy depends on

sensitivity to a general semantic trait (e.g., symbolic branch uniqueness) and can still

misbucket bugs. Built-in or hardcoded techniques further struggle to integrate specialist
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knowledge that can produce more accurate output for classes of bugs.1

We present a new approach to identifying unique bugs in the context of fuzzing: by

modifying the program itself. Our insight is that bugs can be characterized by a semantic

transformation on the program under test. For example, patching one of two buffer overflows

in a single execution can distinguish crashes uniquely caused by the second. Further, a fix

can stop the same logical bug from manifesting on multiple unique execution paths.

Our insight draws on the fact that fixing the program offers a precise way to associate

crashing inputs with a unique bug, since correct fixes should neutralize all crash-inducing

inputs associated with the bug in question.

We introduce Semantic Crash Bucketing, which maps crashing inputs to bugs as a

function of change (delta) in program semantics, where the delta approximates fixing the

root cause of the bug. In general, root cause analysis is hard [128, 164], and automatically

fixing bugs is an open problem [136]. However, existing work in automated program repair

does demonstrate that programs can profitably be transformed to automatically improve

quality [135, 145, 154]. The motivation behind our approach is that changing a program

with approximate fixes can accurately and automatically constrain crashing behavior in a

way that mimics real program fixes to detect unique bugs in fuzzer output.

Semantic Crash Bucketing contrasts with the usual sense of seeking program fixes with

respect to a correctness validation oracle (such as tests [135, 145]). However, although the

objective of Semantic Crash Bucketing is different from automatic program repair, it can

similarly suffer from program transformations that overfit to the success criterion. For

example, suppose a program contains more than one unique bug, each with independent fixes.

Inserting exit(0); at the beginning of a program will satisfy the criterion of neutralizing

all crashes, but will associate (and underapproximate) all unique bugs with a single fix. To

be effective, program transformations must therefore have constrained semantic effects to

precisely identify unique bugs under Semantic Crash Bucketing.

1https://twitter.com/azonenberg/status/966738179486134272
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We propose a rule-based approach using fix templates to constrain the semantic trans-

formations for crash bucketing. Our observation is that common bugs typically detected

by fuzzers (e.g., buffer and integer overflows, null dereferences, etc.) have semantic prop-

erties that are amenable to a rule-based application of general fix templates (as found

in analog APR work, e.g., [70, 122, 191]). At a high level, rule-based application of fix

templates can integrate specialist knowledge of bug semantics into the triage process to

produce more precise output. This attribute is analogous to targeted transformation for

known static analysis issues, as covered in the previous chapter. We demonstrate Semantic

Crash Bucketing for buffer overflows and null dereferences on real-world bugs in the CVE

database [19]. Buffer overflows and null dereference vulnerabilities account for some of the

most common software security weaknesses [139] and are frequently discovered through

fuzzing [16, 182, 189]. Our contributions are as follows:

• Semantic Crash Bucketing, a novel technique to automatically identify unique

bugs as a function of changing a program’s semantics. Semantic Crash Bucketing

groups crashing inputs by applying program transformations to the program under

test. We use Semantic Crash Bucketing to identify imprecise crash reporting in fuzzers,

and to compare the effectiveness of developer-written fixes and approximate fixes.

• Approximate fixes. We present an automated procedure using bug-fixing patch

templates and rule-based application of patches to approximate correct fixes. In

general, correctly and automatically fixing a program is hard. The key insight is

that the effectiveness of approximate fixes is competitive with using correct fixes for

identifying unique bugs. We instantiate Semantic Crash Bucketing with approximate

fixes for real-world bugs commonly found by fuzzers: buffer overflows and null

dereferences and demonstrate effectiveness.

• Empirical evaluation. We comparatively evaluate Semantic Crash Bucketing using

developer-written fixes and approximate fixes with deduplication techniques of three
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state-of-the-art fuzzers (AFL-Fuzz [16], CERT BFF [18], and Honggfuzz [21]). We

show with Semantic Crash Bucketing that approximate fixes associate crashing inputs

precisely with respect to ground truth (i.e., no under- or overapproximation) for 19

out of 21 bugs in 6 projects compared to ground truth fixes. We also show that

bucketing with approximate fixes is more precise than built-in deduplication of all

three fuzzers. Our results are available online.2

4.2 Motivating Example

� �
1 --- a/src/select.c
2 +++ b/src/select.c
3 @@ -4153,7 +4153,7 @@ static int selectExpander(Walker *pWalker, Select *p){
4 /* A sub-query in the FROM clause of a SELECT */
5 assert( pSel!=0 );
6 assert( pFrom->pTab==0 );
7 - sqlite3WalkSelect(pWalker, pSel);
8 + if( sqlite3WalkSelect(pWalker, pSel) ) return WRC_Abort;
9 pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table));

10 if( pTab==0 ) return WRC_Abort;� �
(a) SQLite: a developer fix that avoids a null dereference.� �

1 --- a/src/resolve.c
2 +++ b/src/resolve.c
3 @@ -164,6 +164,9 @@ int sqlite3MatchSpanName(const char *zSpan, const char *

zCol, const char *zTab, const char *zDb){
4 int n;
5
6 + if(zSpan == NULL) {
7 + exit(101);
8 + }
9 for(n=0; ALWAYS(zSpan[n]) && zSpan[n]!='.'; n++){}

10 if( zDb && (sqlite3StrNICmp(zSpan, zDb, n)!=0 || zDb[n]!=0) ){
11 return 0;� �

(b) SQLite: autogenerated approximate fix for the null dereference.

Figure 4.1: Two fixes for a null dereference in SQLite 3.8.9. The actual fix is shown on top
(commit 10c478e). Our approach automatically generates the patch on the bottom.

2https://github.com/squaresLab/SemanticCrashBucketing
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AFL-Fuzz is known to find null dereference and memory corruption bugs in even well-

tested software [15]. Consider one such bug found in SQLite: a null dereference that was

later fixed by the patch in Listing 4.1a. The sqlite3WalkSelect function (Line 7) walks

the expression tree of a SQL select statement. The return value of sqlite3WalkSelect can

indicate an error in a SELECT ... FROM ... statement, but the return value is not checked.

This missing check can lead to a null dereference downstream during execution due to an

invalid FROM clause. The fixing commit message says:

Make sure errors from the FROM clause of a SELECT cause analysis to

abort and unwind the stack before those errors have a chance to

mischief in the "*" column-name wildcard expander.

The developer fix thus checks the return value of sqlite3WalkSelect and aborts, avoiding

any null dereferences downstream (Line 8, Figure 4.1a).

Current fuzzers and symbolic executors can find many different crashing inputs that trig-

ger bugs like these. For example, slight modifications in a crash-inducing SELECT...FROM...

input could follow a different sequence of calls or branches, but still trigger the same bug.

Existing techniques use generic heuristics to identify unique crashes from a set of many

generated inputs. Call stack hashes [18, 21, 42, 95, 157] are predominant; instrumentation-

based fuzzers may use program execution paths sensitive to branch sequences [21]. These

heuristics are fast and moderately effective, but remain imprecise, because they are sensi-

tive to inputs that vary program execution in a way that is unrelated to the actual bug.

Depending on the heuristic and inputs, fuzzers report many duplicate crashes as unique.

Our approach defines bug uniqueness in terms of program transformation. The motivation

is that fixing a bug (as the developer did in Figure 4.1a) ideally “catches” all crashing

inputs related to the bug, irrespective of call stacks or other program execution paths.3

The challenge is that finding true fixes is hard. Automated root cause analysis is difficult
3And, under the correctness assumption of the fix, any other crashing input is associated with a different

unique bug.
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and expensive [128, 141], especially for bugs like this one, that requires deep reasoning.

Our primary insight is that simpler approximate fixes can substitute for real fixes to

precisely bucket crashing inputs (i.e., as the original fix would). For example, Figure 4.1b

presents an autogenerated approximate fix for the same SQLite null dereference bug using

our approach. Semantically, it safely aborts the program if zSpan is null. It turns out

that the SQLite bug leads directly to zSpan being null at this later program point (i.e.,

when the input statement contains a * expander described in the commit message). The

approximate patch “catches” all crashing input variants (i.e., generated by a fuzzer) with

the same precision as the actual patch. Throughout the rest of this chapter, we use the

term “precise” in this sense: to refer to a correct bucketing with respect to a ground truth

developer fix for discriminating crashes. I.e., we do not define a fundamental semantic trait

that such ground truth fixes must have, but consider various traits of fixes for different bug

classes.

Our approach uses syntactic templates and configurable “semantic cues” to generate

approximate patches to mimic developer fixes. Syntactic templates are implemented using

Comby, as described in Chapter 2. Semantic cues act as predicates for applying patch

templates, which fire based on syntactic patterns and dynamic runtime behavior. A

concrete example is “Check whether any dereferenced variables at program point p is null.

If so, return the variable name”. A patch template can then be instantiated with the specific

variable at an appropriate program location. In general, templates and rules for patch

generation and application are specified just once per bug class (e.g., null dereferences and

overflows.). We describe the procedure fully in Section 4.4, but provide a brief summary

here for null dereferences. The patch template for null dereferences checks whether a

variable is null, and safely aborts the program if so. The rewrite template contains a “hole”

for the variable to check, and must be instantiated with a concrete variable. We configure

the procedure to check for a semantic cue: whether variables are null at the point of crash

using a debugger environment. In this case, our procedure finds that zSpan[n] could be a
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problematic dereference, and dynamically checks whether zSpan is null when the program

crashes. Variable zSpan is found to indeed be null, generating the patch in Figure 4.1b.

The patch is validated to confirm that the modified program no longer crashes for the input.

That is, the autogenerated patch approximates the real fix effectively because it discovers

and fixes the related null dereference triggered downstream during execution, even though

it does not deeply address the root cause.

In essence, applying lightweight program transformation reduces noise compared to

typical deduplication heuristics by focusing on the semantic properties of the bug. At

the expense of slight up-front cost per bug class, our approach provides a configurable

mechanism that is sensitive to the semantic property of the bug to more precisely identify

uniqueness.

A configurable approach is important because bugs exhibit different semantic traits to

which program transformation must be sensitive. For example, null dereferences cause an

immediate program crash which allows us to identify possible causes at the point of crash.

On the other hand, buffer overflows typically only cause a crash once corrupted memory is

accessed, and not when the overwrite actually occurs. Handling overflows therefore requires

a different strategy (see Section 4.4).

Fuzzers can also underreport unique bugs. For example, under a naïve call stack

approach, two unique null dereferences in a single function will be reported as just one

unique bug. Our technique can identify each bug uniquely via independent program

transformations.

4.3 Semantic Crash Bucketing

Semantic Crash Bucketing is a general method for bucketing crashes in terms of program

transformation (i.e., a semantic delta). Semantic Crash Bucketing can be performed

with arbitrary program transformations. Our goal in this section is to develop a way for

94



determining how well approximate fixes identify unique bugs compared to (a) ground truth

fixes and (b) existing methods in fuzzers. We now introduce the problem definition and

application of SCB for detecting inaccurate error reports.

4.3.1 Problem Formulation

A bug in this context is a software flaw that leads to an error (i.e., undesirable program

behavior); an error is a deviation from expected behavior defined by a validation oracle.

We focus on the types of bugs typically found by fuzzers, namely those that induce runtime

crashes. For such bugs, the error oracle is signaled by a runtime failure: a crash results in

SEGFAULT.

Semantic Crash Bucketing groups crashing inputs according to a program change that

nullifies those inputs (i.e., cause the inputs to no longer crash the program). Thus, a true

fix for a unique bug maps all crashing inputs for that bug to a unique bucket. Grouping

crashes as a function of known fixing patches is a de facto method for establishing ground

truth classification of fuzzer crash reports [66, 124]. We use this idea to develop a general

method of identifying misbucketing (e.g., duplicate crash reports) arising from approximate

fixes and fuzzers.

Ideal bucketing. We begin by defining an Ideal Bucketing, where the correct fixing

patches for unique bugs in a program are known or presumed. In this definition we qualify

bug uniqueness fully as a function of the known fix. I.e., a single fixing patch implies a

single unique bug with respect to the set of crashing inputs it fixes (irrespective of how much

code is changed). It follows that this definition can represent ground truth to measure

the effectiveness of our approach, given a set of bug-fixing patches that we assume are

correct (Section 4.5). The intuition is straightforward: some known or presumed program

transformation Ti fixes all crashing input associated with a bug i, and only those inputs. Ti

is by construction the theoretically ideal oracle transformation that correctly fixes the bug
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i and thus all of the crashing behavior it can cause. In practice, we may think of such a

transformation as a correct developer-written patch for a single bug.

We express Ideal Bucketing in terms of unique bugs, the crashes they induce, and

their fixes. Let i ∈ n be the identifier for a unique bug i of n unique bugs in a program P .

A unique bug i is associated with a set of one or more crashing inputs, which we denote by

a bucket bi. Let Ti : P → P be a function that applies a correct fix to the program P , for

unique bug i. A correct fix Ti fixes all crash-inducing inputs bi due to i, but none of the

crashes due to a different bug j with crashing inputs bj.

We express all buckets containing crashing inputs uniquely fixed by known Ti, i ∈ n as

disjoint partitions B = b1] · · · ] bn under the correctness assumption of Ti. For a particular

Ti, ideal bucketing implies:

∀ bi ∈ B,

∀ bj ∈ B \ bi s.t.

∀ ci ∈ bi, 〈Ti(P ), ci〉 6 crash

∀ cj ∈ bj, 〈Ti(P ), cj〉 crash

Where 〈Ti(P ), c〉 6 crash expresses that the program P under transformation of fix

Ti and executed on crashing input c does not induce a runtime crash. Ideal bucketing

for a bug i expresses that the fix Ti associates non-crashing behavior with all previously

crashing inputs c ∈ bi, but not any crashes for other buckets bj ∈ B \ bi.4

One subtlety of Ideal Bucketing is the special case where a single input may trigger

multiple bugs. For example, two separate buffer overflow copies (i.e., two bugs b1 and

b2) along the same execution path may overwrite the stack (twice) in a single execution.

From our definition, neither corresponding fix T1 nor T2 will bucket the crashing input.

However, we can extend the definition to account for composition of transformations T1
4Note: if B \ bi = ∅ then the constraint on bj holds vacuously.
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and T2 to place such a crashing input into a separate bucket that represents a composite

fault. Although conceptually useful, we focus on logically discrete fixes (based on developer

patches) to associate crashing inputs with bugs so that it is tenable to experimentally

compare real and approximate fixes. In practice, fuzzer-generated inputs typically trigger

single bugs, and our results corroborate this observation. Classifying composite faults is

an open problem [98] and we leave the consideration of using program transformation for

classifying such faults to future work.

4.3.2 Detecting Duplicates

Our goal in fuzz triaging is to approximate the ground truth ideal bucketing strategy,

minimizing overhead and confusion for the engineer using a fuzzer to identify defects.

Current techniques approximate by, e.g., unique call stack hashes or unique branch sequences.

When such techniques fail, misbucketing occurs. Misbucketing can be classified into two

categories [178]:

1. duplicate bug reporting and

2. suppressed unique bugs: unreported unique bugs that are missed by crash bucketing

(or “over-condensing”).

In this dissertation, we address the first case of duplicate bug reports. We now describe

how we detect duplicate bug reports in terms of fixing transformations Ti, where Ideal

Bucketing does not hold. Consider two example bug reports produced by a fuzzer: bug 1

with a crash bucket b1 = {c1} containing crashing input c1, and bug 2 with b2 = {c2}. We

say that b2 is a duplicate bug report if c2 actually crashes the program due to bug 1. That

is, the correct bucketing implies b1 = {c1, c2} and no bug 2 should be reported. Duplicate

misbucketing wrongly implies bug uniqueness, increasing the triage burden of engineers

processing fuzzer output.

In an imprecise bucketing B, duplication occurs when the following is true for a particular
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Ti:

∃ bi ∈ B,

∃ bj ∈ B \ bi s.t.

∀ c ∈ bi, 〈Ti(P ), c〉 6 crash

∃ cdup ∈ bj, 〈Ti(P ), cdup〉 6 crash

That is, some crash cdup ∈ bj actually fixed by Ti is considered a crash for a different

unique bug j, belonging to bj. By our correctness assumption of Ti, any crash fixed by Ti

must belong to bi for ideal bucketing to hold. Note that if c is the only crash in bj then

a unique bucket is implied, resulting in a duplicate report of bug i as some other bug j

that should not exist.

In summary, given correct Ti’s, we can determine ground truth Ideal Bucketing and

detect duplicate bug reports as deviations from Ideal Bucketing.

4.3.3 Semantic Crash Bucketing Procedure

Our formulation leads to a straightforward procedure for identifying misbucketing in fuzzers.

Figure 4.2 illustrates the process. A Fuzzer takes a program P and input to generate a

set of crashes C = c1, . . . , cn 1 . The fuzzer reports a set of crashing input according to its

built-in method for identifying unique bugs. We represent the fuzzer output as a disjoint

set of unique bugs indexed by I: Bfuzzer =
⊎

i∈I bi 2 .

As a matter of practicality, a fuzzer does not, by default, preserve all generated crashing

inputs. Instead, a fuzzer discards any crashing input it believes triggers a bug it has already

seen, and typically outputs one representative crash for each bug/bucket it considers unique.

This is expressed as Bfuzzer = (b1 = {c1}) ] (b2 = {c2}) ] · · · ] (bn = {cn}).

The function SCB takes as input the set of crashes C and a ground truth fix Tj 3 . For
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Figure 4.2: The Semantic Crash Bucketing procedure.

a single fix Tj , SCB partitions the set of crashes C into a disjoint set b̄Tj
] brest by running

each crash c ∈ C on the modified program Tj(P ). The set b̄j contains all inputs fixed by

Tj, as in the Ideal Bucketing case, while brest contains all inputs that still cause Tj(P )

to crash. The final step 4 tests if the crashes in a nonempty bucket b̄Tj
distinguished by

Tj is contained in Bfuzzer. Because Bfuzzer contains a partition of unique bugs with just

one representative crash in any bi, there are only two outcomes for the test b̄Tj
∈ Bfuzzer:

(1) |b̄Tj
| = 1 and is equal to some bi in Bfuzzer, implying that Bfuzzer precisely buckets

the crashing input for a bug j, or (2) |b̄Tj
| > 1 implying that the crashes in c ∈ b̄Tj

are

partitioned across multiple buckets in Bfuzzer, implying that the fuzzer reported duplicate

bugs. For simplicity, Figure 4.2 illustrates the procedure for a single fix Tj that fixes at

least one crashing input in C. Ideal Bucketing checks that every crashing input in C

can be fixed (and bucketed) uniquely by one or more corresponding fixes T .
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4.4 Generating Approximate Fixes

This section explains how we instantiate our approach to perform SCB using approximate

fixes. In practice, a developer fix provides the best assurance of correctly fixing a known

bug, which we accept as ground truth T for SCB. However, our goal is to reduce the burden

on developers to triage fuzzing output when the crash’s fix is not immediately known.

In general, fixing arbitrary bugs automatically is hard [136]. Our core insight is that an

approximate fix T̂ is competitive with using T to identify unique bugs under SCB. In our

approach, T̂ is an automatic production encoding the semantic properties necessary to fix

possible crash-inducing bugs. To demonstrate, we instantiate SCB with approximate fixes

on null dereferences and buffer overflows in C programs.

4.4.1 T̂ Production.

At a high level, T̂ is a production of a function G(P, T ) that takes two inputs: the source

program P and a crash trace T . A crash trace is produced by executing P on a single

crashing input c. G generates patches from fixing templates, and applies them to the source.

Patch application is predicated on certain syntactic patterns in the program source and

behavior recorded in a dynamic trace. We refer to these predicates as semantic cues that

are sensitive to semantic properties of a bug class. If the predicates are not satisfied, the

program is not modified.

We concretely represent T̂ as a source-level patch. This has two advantages. First,

patches can be used as better bug reports [204], supporting human triage and debugging.

Second, patches can apply without actually running the program, meaning static analyses

(e.g., static symbolic execution) can also benefit from SCB.

We use GDB and ltrace to obtain dynamic crash traces. In principle, any dynamic

technique or analysis can enrich the space of semantic cues to trigger program modification.

We now describe in concrete terms how we obtain T̂ for null dereferences and buffer
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overflows.

4.4.2 Null Dereferences

Null dereferences are typically fixed in one of two ways: correctly initializing a variable or

checking whether a variable is null before dereferencing it [191, 211]. At a semantic level, a

fix must enforce a nonnull property for a variable that results in a null dereference crash.

We use the rewrite template in Figure 4.3 to approximate fixing a null dereference. :[pvar]

is a hole (as in Section 2) substituted with the offending program variable.� �
if (:[pvar] == null) {

exit(101);
}� �

Figure 4.3: A template for null dereferences

The patch approximates error handling by exiting the program on condition of :[pvar]

being null (similar to the common C idiom of return -1;). While simply exiting appears

overly simplistic, it is in fact appropriate for our objective to accurately bucket crashing

input. Consider if we chose a different strategy by returning a value or initializing :[pvar].

Besides the difficulty of correctly inferring appropriate values, we risk the possibility that the

modified program may continue executing and cascade errors or crash in other unexpected

ways. Without complete information of the root cause to actually fix the bug, exiting is a

conservative strategy: it acts as an assertion ensuring the desired nonnull semantic property.

The correct fix in our motivating example supports this strategy: SQLite conservatively

aborts for error cases (but does some extra work propagating the error up the call stack).

Since the template can be changed, our method does not preclude other possibilities.

However, our experiments show that the template in Figure 4.3 approximates true fixes

well enough for precise crash bucketing.

The rewrite template definition is only part of the larger problem: generating the final
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Match Template Extract Template

:[1]->:[2] :[1]
:[1]->:[2]->:[3] :[1]->:[2]
:[1]->:[2][:[3]] :[1]
:[1][:[2]] :[1]
*:[1] :[1]
(:[1])->:[2] :[1]

Table 4.1: We use Comby’s rewrite capability to identify pointer dereferences on variables,
and extract those variables. The Match Template matches syntactic dereference patterns,
and the Extract Template extracts the program variable or expression that is dereferenced.
Ultimately, we are interested in checking whether the extracted variable is null at the point
of the crash.

patch T̂ also relies on identifying the appropriate program variable and location to insert

the patch. Semantic cues from a GDB trace inform patch application: whether a variable

dereference at the point of crash is null. For example, our approximate patch in Figure 4.1b

checks the variable zSpan. The general procedure for finding such crash-inducing variables

works as follows:

1. Attach GDB to the program, run it on the crashing input.

2. Extract the source line and code reported at the crash.

3. Parse the code for pointer dereference syntax (e.g., p->q).

4. Extract program variables that are dereferenced (e.g., extract p from p->q). We

notably use Comby’s rewriting capability to parse and extract these syntactic patterns

(see Table 4.1). We then test, using GDB, whether an extracted variable is null in the

debugger environment. We do this for each possible extracted variable found by the

patterns in Table 4.1.

5. For each variable that is null, return the variable and associated line number. If not,

move backwards a basic block and continue from (3).

If the above procedure succeeds, we substitute the template program variable and insert

the candidate patch at the source location immediately before the null dereference. The null
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check could possibly be placed earlier, and a true fix may indirectly prohibit a particular

variable from being null (cf. the correct SQLite fix in Figure 4.1a). Our decision is an

inexpensive compromise that we show works well in practice.

Before we use the patch for SCB, we first validate that the modified program no longer

crashes for input c. If so, we have found a crash-fixing patch. The patch generation

procedure can produce more than one candidate patch, but our implementation takes the

first crash-fixing patch for bucketing.

Compared to using Comby, there are alternative ways to inspect whether a variable is a

null pointer on crashing input. In practice, we found that using only GDB was unreliable: we

could not easily extract whether a variable is indeed a null pointer, versus just a constant

with the value zero. Inspecting the corresponding syntax thus provides a robust alternative.

Initially we developed a Clang plugin to extract variable and type information. This solution

was brittle: Clang may fail to parse certain files (e.g., it would fail on GCC-compiled code

containing inline assembly). We found Comby to provide a robust and simple solution using

lightweight syntactic patterns. We iteratively developed the six patterns in Table 4.1 during

our experiments until they covered all bug-inducing dereference syntax. Interestingly, we

reached a fixpoint of six patterns for 18 unique null dereference bugs.

4.4.3 Buffer Overflows

Buffer overflows are a class of memory corruption bugs commonly discovered by fuzzers [16,

189]. Buffer overflows are typically fixed by performing array bounds checking on memory

accesses. Our approximation to fixing buffer overflows thus focuses on array length as the

underlying semantic property to change. Inferring array bounds can directly assist suggesting

approximate fixes for arbitrary overflow bugs, but generally requires additional analysis

techniques and remains an open problem [91, 96, 105]. Our approach is to truncate memory

writes that may cause invalid accesses. Applications in failure-oblivious computing [184]
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� �
// Modify a possible overflowing memcpy call
size_t angelic_length = 1;
memcpy(:[dst], :[src], angelic_length);� �

Figure 4.4: A template for memcpy. :[dst] binds to the destination argument for the original
memcpy call, and :[src] is binds to the source argument.

and exploit mitigation [141] use a similar mechanism.

Unsafe C library functions commonly trigger buffer overflows [91, 130, 141, 160] and

persist in modern software.5 Our approach applies templates for common C library functions,

such as memcpy, strcpy, sprintf, gets, strcat, etc.

We give an example template for memcpy in Figure 4.4; the templates for other overflows

are conceptually similar. We rewrite existing calls and restrict the length of data copied to

a default concrete value of 1. Restricting data to only one byte approximates a conservative

angelic value [63] that is likely to lead to non-crashing program termination. Note that

other possibilities exist. We may, for example, instrument the code to obtain actual angelic

values observed at runtime and use these to construct fixes. Our experiments show that

our current choice works well for precise bucketing of the bugs we consider.

Compared to approximating null fixes, overflow fixes do not attempt to stop execution:

placing a condition on the length of a potential buffer proves problematic if we do not

know its bounds. Conversely, simply exiting before calling an unsafe function will overfit to

unique crashing inputs that would crash after the function call. In addition, while memory

corruption occurs during execution of the C library functions, the program only crashes

at a later point : once an invalid memory access occurs in the heap, or when a corrupted

return address is accessed on the stack.6 These behaviors motivate different semantic cues

compared to null dereferences, and emphasize the importance of a configurable approach.

For buffer overflows, we implement a procedure to discover possibly problematic library

5A strcpy vulnerability has been found in the Linux distribution as recently as 2017 [22].
6Memory fence-posts can detect overwrites immediately, and don’t require a program to SEGFAULT. This

requires code instrumentation and extra shadow memory that hurts fuzzing performance. Approximate
fixes can be adapted accordingly, but we currently do not assume such instrumentation.
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calls and resolve their location. A patch template like Figure 4.4 then replaces the call.

The steps are as follows:

1. Use ltrace to obtain a trace of library calls from the crashing program run.

2. Working backwards, resolve the source location of library calls in the trace for which

we have fixing templates.

3. Apply the template at the location and rerun the program on the original crashing

input.

4. If the program no longer crashes, emit the approximate fixing patch T̂ . Else continue

from step (2).

Similar to null dereferences, we validate that the program no longer crashes for any

change done in step 3, and use the first crash-fixing patch for bucketing.

Extending Semantic Crash Bucketing. The patch templates and rules for patching

are embedded in Python scripts and are easy to change. Users can define their own patch

templates and semantic cues for patch application depending on the semantic properties of

the bug types or application-specific APIs. The GDB interface and ltrace output is available

in the scripting framework for customization. Additional analysis tools can be integrated

(e.g., valgrind), though naturally this requires some extra effort.

4.5 Experimental Design

Ultimately, we want to know how well approximate fixes T̂ distinguish unique crashes

compared to (a) ground truth bucketing by T (developer fixes) and (b) built-in fuzzer

deduplication (the previous state-of-the-art). We conduct a controlled experiment with

real bugs for which we know the ground truth fix (Section 4.5.1). Unfortunately, for the

purposes of our experiments, state-of-the-art fuzzers do not all neatly decouple fuzzing

campaigns from crash deduplication (e.g., deduplication is invoked during fuzzing iterations).
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Instead, we first generate, for each bug, an upper bound of inputs that trigger the same

bug (i.e., a “crash corpus”) which aim to exercise different execution paths triggering the

same bug (Section 4.5.2). We then provide this crash corpus as input to each fuzzer, and

run a campaign for a fixed length (2 hours), forcing the fuzzer to perform deduplication on

the crash corpus during fuzzing iterations (Section 4.5.3). We use the developer fix and

apply SCB to obtain the ground truth number of duplicate bug reports after the campaign

(which includes each fuzzer’s deduplication effort on the corpus). We then apply SCB with

approximate fixes and measure (a) the difference from ground truth, and (b) deduplication

improvement over existing fuzzers.

Hardware. We ran our experiments on an Ubuntu 16.04 LTS server with 2 Xeon E5-2699

CPUs and 20GB of RAM. Crash Corpus generation and fuzzing campaigns all ran on a

single CPU core. We used four cores to recompile when validating whether an approximate

fix stops a crash.

4.5.1 Bugs with Ground Truth

We evaluate on a sample of 18 null dereference and 3 buffer overflow bugs in 6 real-world

projects. For each bug we (a) extracted a ground truth developer fix from the project

and (b) sourced a crashing input that triggers the bug (e.g., from online bug reports).

We extracted fixes by manually inspecting individual commits and commit messages that

indicated a bug fix, and performed delta debugging [215] to confirm that a commit fixed

a crashing input. After confirming whether an extracted fix nullifies the initial crashing

input, the fix was accepted as ground truth.

Projects with multiple bugs. SQLite is well-tested, popular database software; w3m is

a text-based web browser. For these projects, we curated datasets of multiple bugs in a

single revision. To be useful, a deduplication strategy should correctly bucket crashing

inputs associated with a bug, but only that bug (and not those for other bugs). That is, T̂
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should be as close to Ideal Bucketing as possible, giving strong assurance that T̂ does

not overfit the input crashes.

Thus, we curated a dataset of fixes for 12 null dereference bugs in a single SQLite

revision. This is an onerous task because developer fixes are often interspersed over long

periods of time7 and fixing patches cannot always be automatically applied to previous

revisions due to intermediate code changes. In addition, a single patch may contain multiple

fixes, which we must separate for each respective bug. We therefore manually minimized

and backported patches to support a large, controlled ground truth study on multiple bugs

in SQLite.

We selected w3m out of a list of projects with reported CVEs [24] and found that it also

has multiple null dereferences for which we could find developer fixes and crashing inputs

that work on the same revision.8 We demonstrate SCB on four null dereference bugs on a

single revision of w3m.

Other projects. We identify two null dereference bugs in different versions of PHP, a large,

popular project with well-documented bugs and ground truth patches. We demonstrate

SCB on real-world overflow bugs in R, a large and popular software suite for statistical

computing; Conntrackd, a networking utility; and libmad, an MPEG audio decoder. We

apply SCB to a strcpy vulnerability in R.

As an interesting demonstration of real-world utility, we applied SCB to two 0-days

that we discovered during prior recreational fuzzing campaigns (a strcpy vulnerability

in Conntrackd and a memcpy vulnerability in libmad). That is, we applied SCB before a

developer fix was available. Roughly 10 months later, the developers supplied us with correct

fixes. Both fixes bucket precisely the same crashing inputs as our automated approximate

fixes in the experiments.

7The SQLite bugs were fixed over a period of four months.
8https://github.com/tats/w3m/issues?q=Null+pointer+is:closed
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4.5.2 Crash Corpus Generation

For each bug, we generate a large baseline corpus of crashing inputs from the initial crashing

input, aiming to exercise different execution paths triggering the same bug. We use this

corpus to test how well each fuzzer’s deduplication method copes with varying behavior

that trigger the same bug. Although a typical fuzzing campaign begins with one or more

non-crashing seed files as input, it is hard to trigger a specific bug starting with arbitrary

seed files: the input search space is huge, and fuzzing nondeterminism means it is difficult

target specific areas of code. Isolating features in test cases is one strategy for producing

crashing test cases that may correspond to the same bug [40, 102], but can take several days

to produce a large test set. Instead, we pursue a conceptually similar approach, mutating

an initially crashing input to explore different execution paths that trigger a particular bug.

We then use this corpus as input to the other state-of-the-art fuzzers.

To do this, we use the existing “Crash Mode” procedure implemented in AFL-Fuzz [16].

The crash exploration procedure tracks branches executed by the input, and mutates

input to try and force execution along different branches, where the objective function is

to preserve crashing behavior. Inputs that fail to explore interesting paths or crash the

program are discarded. We run crash exploration for two hours per bug, producing crash

corpora of related inputs for each bug’s crashing seed file.

4.5.3 Evaluating Fuzzers

We compare to three state-of-the-art fuzzers: AFL-Fuzz [16], CERT BFF [18], and Hongg-

fuzz [21]. These fuzzers are frequently used in industrial and research settings [17, 189, 209]

and implement different deduplication techniques. In general, fuzzers do not decouple

fuzzing campaigns from crash deduplication; crashes are deduplicated during fuzzer itera-

tions. To trigger crash deduplication, we seed fuzzing campaigns for each fuzzer with the

crash corpus.
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Industrial-strength fuzzers are highly configurable. We sought to evaluate on default

options across varying parameters in coverage-based fuzzing, call stack depth, branch

sequences, and point-of-failure information. We evaluate on five configurations across the

three fuzzers:

AFL-Fuzz. We use AFL-Fuzz in its default configuration. AFL is instrumentation-driven,

and keeps track of branches taken during fuzzing. Roughly, this means that AFL is sensitive

to uniquely executed paths. AFL’s default method for fuzzing uses the same mechanism

as “Crash Mode”, starting from a non-crashing seed and with an objective of discovering

arbitrary crashes. One key difference, however, is that “Crash Mode” does not deduplicate

the crash corpus by default. Therefore, to approximate AFL’s deduplication in a real

campaign (while avoiding a redundant fuzzing campaign), we use AFL’s own minimization

procedure directly on the crash corpus, then remove equivalent duplicates.

CERT BFF. We run CERT BFF in its default configuration, which uses a call stack

hash based on, by default, the last five calls (frames) leading to a crash. This number is

configurable. Thus, for the second configuration, we set BFF to use a call stack of just

one frame to determine bug uniqueness. BFF also invokes a built-in input minimizer while

fuzzing on-the-fly.

Honggfuzz. We run Honggfuzz in its default configuration, which uses a call stack hash

of seven calls. By default, Honggfuzz considers information at the point of failure when a

crash occurs (e.g., the last known PC instruction and faulting address) to report uniqueness.

Honggfuzz can enable a feedback-driven fuzzing mode, provided a program is compiled with

the coverage instrumentation. In the first configuration, we disable coverage; in the second,

we enable coverage.

Note that due to input mutation during the campaign, a fuzzer may trigger a bug that

we do not have a fix for. As a final post processing step, we use the ground truth fix T to

filter out only the crashes fixed by T .
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Table 4.2: Semantic Crash Bucketing results. For each fuzzer configuration, we show the Ground Truth number of duplicate
crashes reported by the fuzzer (GT) compared to the number of duplicate crashes reported using approximate fixes with SCB
(SCB+T̂ ). Crash Corpus is the number of crashing inputs that initially seed fuzzing campaigns for each configuration. For
example, Bug #1 (first row) in the HFuzz, GT column shows that HFuzz reports 10 duplicates (determined by the ground
truth fix), while the approximate fix (SCB+T̂ ) reports 0 duplicates. When SCB+T̂ reports 0 duplicates, it is as precise as
ground truth.

Crash AFL BFF-5 BFF-1 HFuzz HFuzz-Cov
Project Type ID Corpus GT SCB+T̂ GT SCB+T̂ GT SCB+T̂ GT SCB+T̂ GT SCB+T̂

SQLite Null deref

1 191 25 0 2 1 1 1 10 0 9 1
2 482 85 0 2 0 1 0 4 0 2 0
3 153 38 0 6 0 0 0 16 0 14 0
4 326 48 0 0 0 0 0 1 0 0 0
5 139 34 0 0 0 0 0 0 0 0 0
6 66 21 0 0 0 0 0 0 0 0 0
7 97 20 0 0 0 0 0 0 0 0 0
8 235 82 0 1 0 0 0 3 0 3 0
9 389 29 0 1 0 0 0 1 0 1 0

10 270 65 0 0 0 0 0 1 0 1 0
11 167 45 1 0 0 0 0 4 2 1 1
12 108 36 0 0 0 0 0 0 0 0 0

Subtotal 2,623 528 1 12 1 2 1 40 2 31 2

w3m Null deref

13 458 103 0 25 0 1 0 75 0 77 0
14 545 23 0 0 0 0 0 0 0 0 0
15 507 36 0 0 0 1 0 6 0 4 0
16 525 11 0 0 0 1 0 0 0 0 0

Subtotal 2,035 173 0 25 0 3 0 81 0 81 0

PHP Null deref 17 81 8 0 0 0 0 0 0 0 0 0
18 272 32 0 0 0 0 0 0 0 0 0

R Overflow 19 7 5 0 3 0 0 0 145 0 198 0

Conntrackd Overflow 20 25 0 0 0 0 0 0 770 0 427 0

libmad Overflow 21 138 8 0 1 0 0 0 1 0 0 0

Total 5,181 754 1 41 1 5 1 1,037 2 737 2
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4.6 Experimental Results

Our main result is that SCB with approximate fixes is just as precise as using the ground

truth fix for 19 out of 21 bugs across all configurations. Approximate fixes suffer only small

imprecision, and perform significantly better deduplication compared to state-of-the-art

fuzzer deduplication in our experiments.

Speed and project size. Automatic patch generation for approximate fixes is fast.

Generating a patch from crashing input and validating that it fixes the crash (including

project recompilation) takes just 18 seconds on average across all bugs. The minimum time

for patch generation and validation is 2 seconds, the maximum 49 seconds. Our sample

uses large real-world projects, ranging from 12KLOC to 1MLOC.

4.6.1 Overall Results

Table 4.2 shows results. Each row corresponds to a unique bug, with assigned “ID”.

“Crash Corpus” is the number of crashing inputs that initially seed the fuzzing campaigns.

We deduplicate crashing inputs for each bug using five fuzz campaign configurations

(Section 4.5): AFL, BFF-5 and HFuzz are default configurations for the three fuzzers.

BFF-1 configures BFF to use just one call in its call stack hash; HFuzz-Cov turns on

coverage instrumentation for feedback fuzzing in HonggFuzz. “GT” is the Ground Truth

number of duplicate reports for each respective configuration, which we obtain using the

actual developer fix T for each bug. Column “SCB+T̂ ” is the number of duplicate bugs for

a campaign reported using approximate fixes with SCB.

Except for Bugs 1 and 11 in SQLite (discussed subsequently), approximate fixes are

as precise as the ground truth fix across all configurations. That is, approximate fixes

detect and remove all duplicates across all fuzzing configurations for 19 out of 21 bugs.

For projects SQLite and w3m containing multiple bugs, none of our approximate patches

suppress any other unique bug. In aggregate, SCB with approximate fixes significantly
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reduces the number of duplicate crash reports compared to the default configurations: from

754 and 1,037 to just two duplicates for AFL and HFuzz, respectively, and a reduction of

41 duplicates to one duplicate for BFF-5. In practice, crash reports produced by fuzzers

must be further triaged manually. Our results show that applying approximate fixes can

automatically cut down on the time that an engineer spends on further triage.

Ground truth fixes expose different “semantic sensitivities” of error reporting across

configurations and bug types. AFL-Fuzz on average reports more duplicate bugs; this is

expected due to its sensitivity to unique execution paths, especially for null dereferences.

On the other hand, AFL and BFF report moderate numbers of duplicates for overflow bugs,

whereas Honggfuzz reports hundreds of crashes for two stack-based overflows (Bugs 19 and

20). Honggfuzz’s default sometimes considers portions of overflowing stack data to signal

unique bugs. Bug 21 is a heap-based overflow, and does not adversely affect Honggfuzz

compared to stack-based bugs. BFF-1 uses just one call to calculate a unique stack hash

per bug, and reports the fewest duplicate bugs. Although BFF-1 appears to perform well,

the configuration is nonstandard in practice because it has the caveat that unique bugs

triggered in the same function are easily missed. None of the bugs in our sample exposes

this weakness in the BFF-1 configuration, but the weakness is common in real fuzzing

campaigns. We include it as one extreme example where coarse, aggressive deduplication

can be performed at the cost of potentially missing unique bugs.

Note that even for cases where a fuzzing configuration reports no duplicates for a

particular bug, approximate fixes do as well as fuzzer deduplication, and strictly better

for the majority of cases where duplicates are reported. This emphasizes an important

point: approximate fixes uniformly bucket crashes via configurable sensitivity to bug-

class semantics. Our results show that lightweight program transformation can effectively

avoid imprecision due to varying (yet broadly applied) choices made by built-in fuzzer

deduplication methods.
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4.6.2 Project-specific Results

SQLite. Approximate fixes for SQLite perform identically to ground truth except for

Bugs 1 and 11. Patches for Bugs 1 and 11 fail to fix 7 crashing inputs out of a larger

duplicate crash set of 62 crashes reported by fuzzers. We analyzed these inputs and found

that they generally trigger different crashing behavior downstream in execution that our

approximate patches do not catch (but which correct patches handle earlier upstream). The

implication is not severe: SCB+T̂ only reports 7 duplicates over all configurations, which is

comparatively low compared to duplicate fuzzer reports.

w3m. SCB+T̂ perfectly simulates ground truth bucketing for w3m. Our approximate fixes

are semantically close to developer fixes: each approximate patch checks the same program

variable for NULL as the corresponding developer patch. Interestingly, Bug 13 produces far

more duplicate crashes compared to the other three bugs across all configurations. This

demonstrates a latent benefit of our approach: SCB can reveal properties about buggy

behavior (e.g., we speculate that Bug 13 can be triggered along many execution paths and

different call chains compared to the other bugs).

We confirmed that crash bucketing with T and T̂ result in disjoint buckets for multiple

bugs in SQLite and w3m, and corresponds to the assumptions of Ideal Bucketing (i.e.,

zero overlap of crashing inputs of distinct bug fixes).

PHP. We applied SCB to one bug each in PHP v5 (CVE-2016-6292) and v7 (CVE-2016-

10162). SCB improves over AFL’s reports; the other configurations do not report duplicates.

R and Conntrackd both contain strcpy overflow bugs. The R bug is assigned CVE-2016-

8714. For Conntrackd, we used our own 0-day strcpy bug that we found by prior fuzzing.

Since no developer fix existed at the time, we manually debugged to develop a ground

truth patch. A couple of months after disclosing the bug, we received a developer fix. The

developer fix, our ground truth patch, and the approximate fix all bucket the same crashing

inputs in our experiments.
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As mentioned, Honggfuzz is particularly sensitive to changes in the stack, especially

overflow vulnerabilities affecting the stack. Honggfuzz provides a way of blacklisting stack

hashes to compensate,9 but this option is disabled by default.

libmad. We also used a 0-day memcpy bug in libmad found by our own prior fuzzing. We

similarly developed our own patch to perform the correct bounds checking on the length

of bytes to copy. Interestingly, and prior to a fix, developers added a C assert statement

before the memcpy call that checks the correct bounds. However, assert statements are not

compiled in release versions and the bug still results in a SEGFAULT. We used the assert

statement to inform an initial ground truth fix for checking the buffer bound. Once again,

after receiving a developer fix, our own fix and the approximate fix bucket the same crashing

input. Our deduplication gain is smaller for libmad, but remains precise. Our libmad

example shows that approximate fixes extend to varieties of API calls in real-world bugs

with little effort.

4.7 Discussion

Merits of SCB and approximate fixes. Our approach can be layered on top of

existing fuzzer deduplication methods or as a drop-in replacement. In general, SCB opens

the opportunity to parameterize bucketing using targeted program transformation. One

advantage of automated patch generation is resilience to changes in unrelated code across

revisions. Concretely, we can generate an approximate fix for any revision containing the

bug. This is not true for static, developer written patches. As explained, we had to make

careful effort to isolate and backport existing patches for a ground truth study.

Approximate fixes can also improve fuzzing performance and coverage [176]. Fuzzers

are known to get stuck on shallow bugs that restrict execution past a memory corruption

9https://github.com/google/honggfuzz/pull/29
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bug.10 Our approach provides a lightweight, parameterizable solution to augment fuzzing

behavior and overcome such obstacles.

Limitations. Our approach requires some up-front manual cost to parameterize automated

behavior for generating approximate fixes. The complexity of the targeted bug class also

bears on the difficulty of specifying appropriate semantic cues and patch templates, and

various approximations will affect accuracy of semantic bug containment. We demonstrated,

however, that conceptually simple patch templates and semantic cues work well for common

bugs found by fuzzers in real-world programs. We speculate that the approach generalizes

further to, e.g., division-by-zero, arithmetic overflows and use-after-free bugs. In general,

we offer that one-off specification per bug class is competitive with per-fuzzer configuration

that preclude fine-grained semantic control.

Our time spent selecting projects to evaluate was dominated by whether we could find

ground truth fixes and crashing inputs. Though the sample is small, every project that

satisfied these criteria has worked with our approach so far (i.e., we do not fail to find an

approximate fix), modulo the need for incremental refinements in our approach (e.g., we

added a preprocessing step that expands macros in PHP to discover null dereference syntax

when the program crashes).

In our experiments we observe that both approximate and developer fixes address

unique bugs with a single check. Conceptually, we can imagine a case where some buggy

behavior (e.g,. a null pointer) may be checked once before branching on multiple paths, or

alternatively along two different paths.

Depending on the transformation, crashing inputs may thus map to one or two buckets.

Our approach for null dereferences currently follows the second strategy for bucketing

(since we add the check close to where the dereference occurs). In our experiments, this

matched the behavior of developer fixes. Note that we can extend our approach to use

first strategy (i.e., by searching for branch points and inserting checks upstream) and even
10https://github.com/google/fuzzer-test-suite/tree/master/libxml2-v2.9.2

115

https://github.com/google/fuzzer-test-suite/tree/master/libxml2-v2.9.2


compare different strategies; exploring and comparing such transformation strategies holds

interesting potential for future work.

Due to the difficulty of performing organic fuzzing campaigns for known bugs, we

purposely generate a crash corpus by mutating existing crashing inputs. The generated

crash corpus likely inflates the number crashes that an organic campaign would encounter.

Nevertheless, the crash corpus serves as a useful upper bound to quantify precision of

default deduplication techniques in fuzzers versus SCB.

We evaluate our approach on existing state-of-the-art fuzzers under default options and

with small modifications to BFF and Honggfuzz. We recognize that deduplication can be

tweaked and improved with additional parameters and post processing (e.g., stack hash

blacklists), but we generally believe that fuzzers (like other tools), should run with sensible

defaults.

4.8 Related Work

Our approach relates generally to existing work in identifying bug uniqueness and bucketing

crashing inputs [66, 76, 78, 178]. Of particular interest, Chen et al. [66] propose a machine

learning approach that ranks interesting test cases for compiler fuzzer output, and use

fixing patches as ground truth to map crashing inputs to unique bugs. Semantic Crash

Bucketing draws on the idea of using ground truth fixes to precisely identify unique bugs,

obtaining similar precision to ground truth by automatically approximating fixes.

Recent work by Pham et al. [178] uses a clustering algorithm that relies on a semantic

characterization of inputs as constraints over paths, with particular applicability to symbolic

executors. Our approach also promotes a semantic characterization of bugs, but focuses

on being sensitive to semantic properties of bugs themselves, rather than summarizing

crashing inputs in terms of path constraints. Broadly, current techniques manipulate and

analyze program input or otherwise instrument programs to obtain “read-only” behavior of
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programs (such as input coverage [66], constraints on input [178], or crash callstack [157])

to group crashes. To the best of our knowledge, SCB is the first technique that appeals to

program modification for precisely grouping crashing input in the absence of ground truth

fixes.

Angelic debugging [63] seeks to modify programs by replacing expressions with values,

which bears conceptual similarity to our approximating fixes for C library functions. Our

problem focus differs, however: we seek accurate crash bucketing in the presence of duplicated

or unreported bugs, while Angelic debugging seeks to fix failing test cases while preserving

existing passing test cases.

In terms of program modification, our work relates to failure-oblivious computing [147,

184]. For instance, our rule-based application of fix templates shares similarities with the

idea proposed by Long et al. [147], who modify a program so that a null dereference does

not cause it to crash. The objective of failure-oblivious computing, however, is to make

program execution resilient to crash-inducing effects of bugs such as null dereferences or

divide-by-zero errors. By contrast, SCB seeks to isolate unique bugs by selectively applying

program transformation, rather than providing an automatic catch-all technique for keeping

a program running in the interest of resilience. Syntactic patches promote the benefit of

“patches as better bug reports” [204] so that engineers can analyze semantic effects that

influence crash bucketing. Peng et al. [176] show that applying program transformation

while fuzzing can increase program coverage and reveal more bugs; while our approach

focuses on accurate crash bucketing, our technique complements this recent idea.

Fault localization [69, 117, 140, 183] and automatic program repair [136, 141, 211] share

similar high level goals for identifying bugs and automatically fixing them. This work

is broadly complementary to ours, providing techniques that can assist with accurately

identifying fault locations for patch placement, and appropriate program transformations

for different bug classes.
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4.9 Summary

We introduced Semantic Crash Bucketing, a way to perform crash bucketing using lightweight

program transformation. We then developed an automatic approach that applies patch

templates to approximate real developer fixes to perform crash bucketing. Our approach

uses configurable rules (specified once per bug class) that instantiate and apply patch

templates based on crashing behavior. Unlike coarse deduplication methods, rules and

templates are sensitive to bug-specific semantic properties and crashing behavior. We

developed approximate fixes for null dereferences and buffer overflows. We performed

a ground truth study comparing SCB and approximate fixes to (a) true developer fixes

and (b) crash deduplication of three state-of-the-art fuzzers (AFL, BFF, and Honggfuzz).

Our results show that approximate fixes are competitive with crash bucketing precision

of true developer fixes, and perform strictly better deduplication than all tested fuzzer

configurations.

Our main insight drew on the principle that fixing the bug offers a precise way to associate

crashing inputs with unique bugs. In general, finding true fixes is hard (Section 4.2), and we

offer that approximate fixes can achieve desirable outcomes in behavior. Nevertheless, work

in automated program repair seeks to actually fix bugs, and thus presents extensive value

for techniques like Semantic Crash Bucketing, if successful.11 To realize such possibilities,

automated program repair techniques must mature to automatically reason deeply about

newly-discovered bugs: their root causes, and the semantic changes that correctly fix the

bug. Current APR approaches predominantly rely on tests to correctly fix bugs, and hence

are not applicable to newly-discovered bugs found by automated techniques like fuzzing. In

the next chapter, we consider a new approach that overcomes this limitation, and augment

an existing static analysis to inform semantic-driven program repair.

11I.e., we can replace approximate fixes with even more accurate true fixes.

118



Chapter 5

End-to-End Static Automated Program

Repair

This chapter presents a new automated program repair technique using separation logic.

At a high level, our technique reasons over semantic effects of existing program fragments

to fix faults related to general pointer safety properties: resource leaks, memory leaks, and

null dereferences.

Automated program repair (APR) can be seen as a particular specialization of automated

program transformation where a semantics-altering change must satisfy certain correctness

conditions to be considered a true bug fix. Defining and performing both program changes

and correctness validation are core challenges for achieving automated program repair. A

successful approach, however, poses extensive impact. For one, APR is extremely valuable

for directly improving software quality by fixing bugs [106]. When seen as another instance of

targeted program transformation, APR also presents the ability to enable better automated

reasoning (as exemplified by approaches in Chapters 3 and 4). We focus specifically on

using semantic reasoning (informed by static analysis) to repair for previously unknown

bugs, thereby overcoming limitations in test-driven approaches. Our approach is effective:

we correctly fix undiscovered bugs in real-world code, six of which have been merged into
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popular C and Java projects. We further show examples wherein bug fixes allow the static

analysis to discover more true positive bugs.

5.1 Introduction

Software bugs are expensive and time consuming [56, 167], motivating research to find and

fix them automatically. In Chapter 4, we presented additional motivation: the potential to

improve dynamic fuzz testing results. Research in automated program repair holds promise

for reducing software maintenance costs due to buggy code. Considered broadly, a program

repair is simply a transformation that improves a program with respect to some abstract

domain that describes correct versus incorrect program behavior. The vast majority of

modern repair techniques (e.g., [120, 135, 146, 154, 164, 177]) use test cases to construct

this domain. Tests are appealing because they are intuitive and widely-used in practice

(more so than, e.g., formal specifications) and can straightforwardly indicate whether a

given change improves the program in question (i.e., by turning a previously failing test

case into a passing one).

However, tests are limiting in several ways, especially (though not exclusively) for APR.

Writing good tests is nontrivial [167], rendering some real-world suites a weak proxy for

patch correctness [181]. APR techniques and humans alike can overfit to even high quality

tests, producing patches that do not generalize to the true desired functionality change [190].

Developers must write a deterministic, reproducible test case corresponding to a bug under

repair to use test-driven APR. This use case is particularly applicable to, e.g., regressions,

but is limiting for previously-unknown defects.

More fundamentally, tests are only suitable for finding and guiding the repair of certain

kinds of bugs. Some bug types are simply difficult to test for in a finite, deterministic

way [163]. Consider concurrency errors or resource or memory leaks: Figure 5.1a shows an
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example memory leak from Swoole1 (line 11), which may be fixed by adding a call to the

project-specific resource allocation wrapper sw_free (Figure 5.1b). Alternatively, consider

the code in Figure 5.2a, from error-prone.2 The call to resolveMethod on line 3 can return

NULL, leading to a possible null pointer exception on line 6. A developer committed a fix

(with a test) that inserts a call to a custom error handler (checkGuardedBy, line 5). However,

the very same mistake had been made on lines 10–13, in the same switch statement, but

was not fixed for another 18 months. Even when bugs are deterministically reproducible,

tests usually cannot identify recurring mistakes like this.

Finding and fixing these types of bugs motivate the use of quality assurance techniques

beyond testing. Considerable recent progress has been made in expressive, high quality static

analyses that can cost effectively find real bugs like these examples in real programs [13,

54]. Companies like Ebay [114], Microsoft [54], Facebook [61], and others publicize their

development and use of such analysis tools in engineering practice. Some bug-finding

tools, like error-prone or Findbugs [44] even provide “quick fix” suggestions for certain bug

classes, simplifying the process of repairing them. Developers find such suggestions very

useful [48], and indeed their absence has been identified as a barrier to uptake and utility

of static analysis tools [116]. However, the suggestions present in current tools are simple,

generic, and usually exclusively syntactic (e.g., recommending the addition of static or

final modifiers to variable or function declarations). Moreover, they provide no semantic

correctness guarantees.

We propose a new technique that automatically generates patches for bugs in large

projects without a need for either tests or developer annotation, for a semantically rich class

of bugs that can be identified by recent, sophisticated static bug-finding techniques based

on separation logic [49, 50, 52, 82]. Our key insight lies in the novel way we adapt local

reasoning [168, 170, 212], “the workhorse of a number of automated reasoning tools” [169], to

1Swoole is a popular concurrency library for PHP, https://github.com/swoole/swoole-src
2error-prone is an open-source static analysis tool, https://github.com/google/error-prone
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� �
1 swHashMap *hmap =
2 sw_malloc(sizeof(swHashMap));
3 if (!hmap) {
4 swWarn("malloc[1] failed.");
5 return NULL;
6 }
7 swHashMap_node *root =
8 sw_malloc(sizeof(swHashMap_node));
9 if (!root) {

10 swWarn("malloc[2] failed.");
11 return NULL; // returns, hmap not freed
12 }� �

(a) Memory leak: forgetting to free memory before return in Swoole.� �
1 #define sw_free(ptr)
2 if(ptr) {
3 free(ptr);
4 ptr=NULL;
5 swWarn("free");
6 }� �

(b) sw_free wraps a call to free.

Figure 5.1: Fixing a memory leak in the Swoole project

pull out relevant parts of program state, and then search for repairing code from elsewhere in

the same program. At a high level, our technique searches for and adapts program fragments

satisfying a generic, pre-specified semantic effect that address a given bug class (such as

“if the file is open in the precondition of a program fragment, it should be closed in the

postcondition” to address resource leaks, like the one shown in Figure 5.1a). These fix effects

are generic, and need only be specified once per bug class. They are also language- and

API-agnostic, which means our approach applies off-the-shelf to multiple source languages,

and its patches automatically conform to the programming conventions in a given project

(e.g., constructing a patch using a project-specific custom resource handler like sw_free for

memory leaks, if available, or free, if not), without requiring any additional customization.

We instantiate our approach in a tool called FootPatch, an extension to the Infer [61]3

3https://github.com/facebook/infer
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� �
1 case IDENTIFIER: {
2 MethodSymbol mtd =
3 resolver.resolveMethod(node, id.getName());
4 // mtd may be null
5 + checkGuardedBy(mtd != null, id.toString());
6 return bindSelect(computeBase(context, mtd), mtd);
7 }
8 case MEMBER_SELECT: {
9 ...

10 MethodSymbol mtd =
11 resolver.resolveMethod(node, id.getName());
12 // same problem!
13 return bindSelect(computeBase(context, mtd), mtd);
14 }� �
(a) Developers fixed the potential null pointer exception on line 6; 18 months later, they addressed
the very similar bug on lines 10–12.� �
1 public static void checkGuardedBy(boolean cnd,
2 String fmtStr, Object... fmtArgs) {
3 if (!cnd) {
4 throw new IllegalGuardedBy(String.format(fmtStr, fmtArgs));
5 }
6 }� �

(b) error-prone’s custom guard handler.

Figure 5.2: Fixing a null dereference in Google’s error-prone tool.

static analysis tool. Infer finds bugs by automatically inferring separation logic assertions

over program statements. Infer reasons over a semantic, analysis-oriented Intermediate

Language (IL), and applies to large, real-world programs written in multiple source languages.

Separation logic can be used to encode a variety of desirable correctness properties [61, 81].

We situate our approach by extending analyses that find bugs related to the violation of

pointer safety properties, the focus of Infer. In this dissertation, we restrict our focus to

constructing additive patches for resource leaks, memory leaks, and null dereferences. We

discuss directions for generalizing our technique in Section 5.5.

Our approach provides several important benefits over previous techniques for automatic

patch generation or fix suggestion. By integrating directly into the static analysis workflow,

our approach addresses different types of bugs than are handled by most dynamic APR
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techniques, and can encourage the adoption of these robust static bug finding tools in

practice [116]. Because of the way our approach uses compositional specifications, it

can produce fixes that are significantly semantically richer than existing static “quick

fix” suggestions. FootPatch can construct repairs that cross procedure boundaries,

entail multiline fixes, and are robust to program-specific customization like wrapper APIs.

These benefits are evident in the above examples, both of which FootPatch can repair

automatically. Note, for example, a call to checkGuardedBy does not on its own constitute a

repair, as it simply checks the results of a boolean expression. FootPatch can determine

that the function implements the desired behavior because it searches over compositional

function call results. Additionally, both bug fixes use custom resource wrappers, which

are often desirable as fixes because they are consistent with the convention in other

parts of the program. For example, sw_free wraps the free function, and performs

additional, non-interfering operations by setting the pointer to null and logging a debug

message. Finally, unlike previous repair techniques that build on more formal abstract

domains [79, 126, 143, 175], our approach scales to real-world programs, automatically

instantiates and applies its patches, and relies on a principled semantic treatment to argue

patch correctness and prevent patch overfitting. That is: FootPatch demonstrates a

promising and previously underdeveloped application of end-to-end identification and repair

of previously undiscovered bugs in real programs.

Our contributions are the following:

• Program Repair with Separation Logic. We present a repair technique using

separation logic to ensure a desired correctness property based on pointer safety.

The abstract domain provides a basis for reasoning about explicit semantic effects

introduced by patch fragments, and enables a formal argument for semantic patch

correctness.

• Repair Extraction and Application Formalism. We formalize the search and
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extraction of program fragments with respect to a repair specification, and define the

conditions for patch generation and automatic patch application with respect to a

detected bug.

• Evaluation. We present an evaluation on popular software projects. Our approach

fixes 24 resource leaks, 7 memory leaks, and 24 null dereferences in popular Java

and C programs, including 11 previously undiscovered bugs. We are unaware of

any prior repair tool that supports multiple languages under a single analysis. Our

implementation runs on big projects (> 200 KLOC). Run time ranges from 7 seconds

to 21 minutes per project, to perform both finding and fixing bugs within the project.

For applicable projects, our experiments show that the majority of correct patches (53)

are found by searching for repair candidates that are callgraph-local to the bug, and

expanding repair search to the project globally fixes 2 additional bugs. We observe a

false positive rate of only 7% for fixes. Moreover, we demonstrate anecdotal evidence

that our technique can lead the original static analysis to discover more bugs after

performing repair.

• Open Source Repair Tool. We implement our technique in a tool called Foot-

Patch, built on top of the open source Infer static analyzer.4

Section 5.2 provides background theory underpinning our approach. Section 5.3 details

our repair approach using separation logic. Section 5.4 evaluates FootPatch, a tool that

implements our approach. Section 5.6 discusses related work; Section 5.7 concludes.

5.2 Preliminaries

We build our approach on top of the analysis engine used in Infer [59], an open source

framework that uses separation logic and Hoare logic-style reasoning to find bugs at scale,

particularly those related to heap or pointer errors. This analysis abstracts a program
4https://github.com/squaresLab/footpatch
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E ::= x | nil | c
B ::= E = E | E 6= E

S ::= x := E | x := [E] | [E] := E | x := new() | dispose(E)

C ::= S | C;C | if (B) {C} else {C} | while(B) [I] {C} | x := f(
−→
E )

P ::= · | f(
−→
E ){local

−→
E ; C; return E};P

(a) A simplified Smallfoot grammar, for illustration.

H ::= E 7→ E

Σ ::= H1 ∗ · · · ∗ Hn | emp
Π ::= B1 ∧ · · · ∧Bn | true | false
P,Q ::= Π ∧ Σ | if B then P else P

(b) The assertion language grammar.

Figure 5.3

to an intermediate language, and then symbolically interprets it to find paths that may

lead to particular property violations (like null pointer dereferences). This section outlines

background concepts underpinning our approach and the analysis it extends: the abstract

program model and separation logic assertions (Section 5.2.1), the frame inference procedure

for discovering specifications (Section 5.2.2), and an overview of how the concepts fit together

to find bugs statically in real-world programs (Section 5.2.3).

5.2.1 Program Model and Assertion Language

Infer and our analysis both begin by abstracting a source program in one of several

languages (e.g., Java, C, C++) to the Smallfoot Intermediate Language (SIL) [49]. SIL is

an intermediate analysis language that represents source programs in a simpler instruction

set describing the program’s effect on symbolic heaps. This is particularly suitable for static

analyses that find bugs related to pointer safety properties.

Program model. Figure 5.3a shows a simplified SIL grammar to illustrate the overall
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program model. A SIL program P is a set of procedures [50, 51, 60]. SIL procedures have

single return values and do not access global variables. Procedures consist of a series of

commands (C, in Figure 5.3a), which model actions that generate assertions over symbolic

heaps (described next). The storage model is fairly standard [60, 173]: Heap is a partial

function from locations Loc to values Val (for simplicity, locations are positive integers

and values are integers): Heap def
= Loc⇀ Val. Stack is a function from variables to values

Stack
def
= (Var ∪ LVar) ⇀ Val. Variables are two disjoint sets: a set of program variables

Var and a set of logical variables LVar. A program State is simply the combination of its

heap and stack: State def
= Stack× Heap.

Assertions. SIL commands primarily capture effects over symbolic heaps, which comprise

the abstract domain for detecting faulting conditions (e.g., memory leaks, resource leaks,

null dereferences).5 These effects can be described via pre- and postconditions expressed

in separation logic, which decorate the SIL commands accordingly. Figure 5.3b shows

the assertion language grammar. The grammar encodes heap facts using points-to heap

predicates over program and logical variables (i.e., E 7→ E). Heap predicates are considered

“separate” sub-heaps (or heaplets), whose separation is denoted by the separating conjunction

∗ (read “and separately”). The separating conjunction implies that the two sub-heaps are

disjoint. Pure boolean predicates of the form B1 ∧ · · · ∧ Bn assert conditional facts over

heap predicates (e.g., E = nil).

Given our focus on repair, assertions are relevant insofar as they describe semantic

effects of statements (as predicates) on the heap. We denote by E Z⇒ Alloced a predicate

Alloced on E for allocated memory (e.g., we may represent it in the grammar by the

assertion E 7→ x ∧ true for x fresh). For simplicity, this notation may assume a program

variable evaluates to a heap location (such as hmap); we do this with the understanding that

stores and heaps are typically treated separately in the storage model [60]. As a practical

5Symbolic heaps enable a decidable proof system for entailments under a prescribed semantics [49]; we
elide details for brevity.
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matter, Infer defines additional predicates File and Memory to distinguish file resources

from memory. These predicates are attached via function models (e.g., fopen adds the

File predicate; malloc adds the Memory predicate). We use our convenience notation

pvar Z⇒ 〈Alloced, File〉 to express allocated memory with the attached File predicate. We

express freed memory with a corresponding assertion pvar Z⇒ 〈Freed, File〉. With respect

to Figure 5.3b, a freed operation corresponds to assigning a variable “emp”. As a final

practical matter, Infer provides an Exn heap predicate to indicate exceptional behavior for

some exception e. We express this as _ Z⇒ 〈Exn e〉.

5.2.2 Frame Inference

A key novelty in our work is the way we extend frame inference [50] to find bug repairs;

we thus briefly overview frames and frame inference in this context. Infer’s separation

logic-based analysis uses Hoare-style reasoning to find specification violations. It does

this at scale by summarizing the effects of individual terms in a procedure, and then

composing them into procedure-level specifications. Local reasoning [168, 170] is used to

summarize the effects of those individual terms. Local reasoning is enabled by the fact

that a program command can often affect only a sub-part of the heap. For example, the

statement hmap = sw_malloc(sizeof(swHashMap)) is modeled as affecting only hmap; the

rest of the heap is unaffected by the allocation. The fact that sub-states can change in

isolation is modeled by the separating conjunction. The unchanged part of the heap for a

command is its frame; the parts of the heap that a command reads from, or writes to, is

known as its footprint.

Thus, frame inference, which automatically infers command frames such that they can

be composed efficiently into procedure summaries [60]6 is key to a number of automated

6For completeness, this compositional analysis also infers anti-frames, or the missing parts of the heaps
state. Anti-frame inference allows the analysis to deal with unknown calling contexts and increases precision
by propagating intermediate results. Anti-frame inference is not critical to our approach.
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reasoning tools [169]. By discovering the unchanged heap portion of an operation, frame

inference discovers footprints, expressed as small specifications of program terms [50, 81, 165].

More formally, the Frame Rule codifies the notion of reasoning over local behavior:

{P} C {Q}

{P ∗ F} C {Q ∗ F}
Frame Rule

The Frame Rule allows analysis of a command C with a specification {P} C {Q} and a

heap state H to proceed, without considering unaffected parts of H (the frame F ), if it

can be separated into parts {P ∗ F}. Frame inference [50, 60, 80] discovers a frame F

that allows the Frame Rule to fire, enabling local reasoning over the footprint. We can

summarize frame inference as follows. Let Frame(H,S) be the frame inference procedure

that returns a frame F (if it succeeds) for a given heap state H and a specification S of a

command (expressed in the grammar of Figure 5.3b). The procedure consists of a proof

system using subtraction and normalization rules to partition the heap H into S ∗ F . We

refer to previous work for the complete algorithm and proof system [50].

5.2.3 Finding Bugs Using Separation Logic

The previously described reasoning enables scalable, compositional static bug finding with

minimal developer effort (in the form of, e.g., annotations or customization) over real-world

code bases. Infer implements these by ideas by converting source programs into SIL, and

then infers specifications (described as symbolic heaps) for SIL program fragments. It

discovers bugs by symbolically executing SIL commands over symbolic heaps, according to

a set of operational rules that update symbolic heap assertions [50]. The general goal of this

static analysis is to discover program paths with symbolic heaps that violate heap-based

properties.

Infer currently supports detecting a variety of heap-related bugs using separation logic:
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resource leaks, memory leaks, null dereferences, as well as experimental support for buffer

overflows, thread safety, and taint-style information flow bugs (e.g., detecting SQL injections

for unsanitized values) [11, 12]. While we believe our approach generalizes to these other

bug types, we focus here on pointer-safety properties of heaps for repair, specifically resource

leaks, memory leaks, and null dereferences, as the support for them in Infer is most mature.

To illustrate, consider the memory leak described in Figure 5.1a. Infer discovers this

error by identifying the path through line 11 where the variable hmap is allocated but not

freed before becoming dead. When it discovers such an error, the symbolic interpreter

enters a special state, fault. We denote this formally by C`, σ ; fault, meaning that

the interpretation step ; for instruction C at location ` in symbolic state σ results in

a fault. For this example, hmap is still allocated in the symbolic heap (denoted by the

predicate Alloced, i.e., {hmap Z⇒ Alloced}) at the location ` = 11 when it becomes dead:

return`, {hmap Z⇒ Alloced} ; fault.7 At this point, our approach takes over from the

bug-finding analysis, to seek a potential fix.

5.3 Repair with Separation Logic

This section presents our program repair technique using separation logic. Section 5.3.1 for-

malizes our notion of repair with respect to heap-based property violations. In Section 5.3.2

we formalize the search procedure to discover candidate patch code, drawn from existing

program fragments (i.e., from elsewhere in the program under repair). In Section 5.3.3

we describe the application of candidate fragments in source code, in terms of where to

introduce a change and how we filter out invalid candidates. We illustrate throughout by

referring to the motivating example in Figure 5.1.

7For illustration, we consider only the predicate on hmap, ignoring the rest of the state.
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5.3.1 Formulating Repair

Fundamentally, any program transformation (for repair or otherwise) is composed of

either one or a combination of two primitive operations: addition and removal of program

terms. Taking separation logic as the abstract domain, a bug fix corresponds to a program

transformation that leads to a fault-avoiding interpretation in the analysis with respect to

the property in question. We presently consider only additive program transformations,

and do not perform removal operations, because the types of bugs we consider are typically

caused by the lack of certain operations on explicit heap content (e.g., resource release,

freeing memory, or checking nullness of return values). For instance, developers often forget

to insert missing checks [14, 206]. Bug-fixing changes for these types of bugs thus correspond

to inserting missing statements (e.g., checks, initializations, or cleanup handlers). Other

types of repairs are certainly valuable, in this domain and others, but we leave discovery of

them to future work.

The central repair question is thus: Does there exist a fragment ?C that can be used to

transform the program such that the fault state is no longer triggered? We express this

formally as follows:

Definition (Program Repair). Let HBad be the heap configuration that results in a fault

under interpretation of a command C at location `. A repair is an additive transformation

T on a program P that transitions the fault-inducing predicate in the heap state HBad to a

heap state HGood that preserves a fault-avoiding interpretation for C at `. A repair satisfies:

C`,HBad ; fault =⇒ T`′ ,H
∗;C`,HGood 6; fault

The additive transformation T is a program fragment (operating on the program heap

H at some point `′) that induces a desired fix effect on the heap, producing HGood at `. The

fix effect precisely defines what it means to avoid the fault state.

We encode the transformation T (i.e., the fix effect) as a Hoare-style triple that we call a
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Repair Specification. We specify T as two singleton heaps (i.e., a single points-to relation

as in Figure 5.3b): F mapping to a fixable predicate over a placeholder variable pvar in the

precondition, and a corresponding F ′ mapping to a fixed predicate over that placeholder

pvar variable in the postcondition. F and F ′ express the desired symbolic transition on the

abstract predicates. For example, F = {pvar Z⇒ Alloced}, F ′ = {pvar Z⇒ Freed}, specifies

a generic fix effect for memory leaks over placeholder variable pvar. Note that such fix

effects are generic to entire bug classes. By expressing repair over the abstract domain

describing what the code does, this fix effect specification approach is multi-language and

resilient to syntactic customizations (like APIs or wrapper functions).

Definition (Repair Specification). A Repair Specification R is a specification

containing a program term repair fragment CR (a command C in the Smallfoot grammar)

that effects a state transition from an error heap configuration F to a fixed heap configuration

F ′, denoted {F} CR {F ′}, via an atomic update of an abstract predicate.

In its current form, we manually specify appropriate F and F ′ corresponding to the

general bug classes in question. Defining a mechanism to automatically determine F and F ′

(e.g., by formally deriving it from a violation reported by an analysis) is an interesting and

plausible research direction that we leave for future work. Note however, that fix effects are

generic to an entire bug class, and thus need only be specified once per analysis type to be

applied to a given program. Moreover, the static analysis provides a degree of confidence in

the choice of F and F ′: a poor choice will not ensure a fault-avoiding interpretation for a

particular fault, and will be detected by analysis of the transformed program.

Our implementation provides default fix effects for the bug classes we consider that

suffice for many off-the-shelf projects, requiring customization only when a project uses

a particular or unique paradigm for handling, e.g., custom exceptions. Extending our

technique to new static checkers (employing automated semantic reasoning as found in

Infer) could similarly involve specifying default fix effects for patching them, eliminating
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the need for developer-provided specifications for many real-world projects.

5.3.2 Searching for Repairs

Repair Queries. Different automated techniques can discover repairs, including program

synthesis [126] or syntactic program mutation [135]. Our technique does so by searching

over existing program fragments, which can often exhibit the desired semantic effects to fix

faults [126, 134, 146]. Using existing program fragments also preserves program-specific

syntactic structure and semantic shape that accompany a fix, and may decrease the risk

of overfitting repairs [120]. We thus search for program fragments CR in the Smallfoot IL

from across the rest of the program with a Repair Query. A Repair Query encodes

the desired semantic transition and returns satisfying Repair Specifications.

We illustrate this overall framing with respect to our running example in Figure 5.4:

The computation in (1) shows the semantic change that must be induced by some ?C`

to preserve a fault-avoiding interpretation, fixing the memory leak bug in question. The

computation in (1) informs the repair question labeled (2) in Figure 5.4. The specification in

(2) describes a desired program fragment ?C that induces the desired fix effect on symbolic

variable pvar, which is allocated on precondition to ?C, and freed on postcondition. Note

that this fix effect is flexible, and could describe fix code such as free modeled in generic

C or the custom sw_free function. A Repair Query seeking to repair a file resource

leak, on the other hand, could find fragments such as close or fclose in C, or f.close()

for a file f modeled in Java. Although the fix effects must be either inferred or specified,

their portability across multiple programs and languages amortizes the manual burden

and represents an important improvement over the labor required to use test-based APR

techniques, which require a triggering test case per bug under repair.

We call (2) the Repair Query, a Hoare triple containing a “hole” for an instruction C

that induces the desired semantic change under the standard partial correctness interpreta-
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?C`′ , {map Z⇒ Alloced}; return`, {map Z⇒ Freed} 6; fault (1)

{pvar Z⇒ Alloced} ?C {pvar Z⇒ Freed} (2)

Figure 5.4: Modeling repair search.

tion. For example, the fixing fragment sw_free(map); corresponds in the IL to a command

C of the form {map Z⇒ Alloced} call(·) {map Z⇒ Freed}, with the concrete program variable

map bound to pvar.

Semantic search constraints. A Repair Query expresses a symbolic transition on the

abstract predicates, providing a basic structure that expresses fixes in terms of desired

semantic heap properties. So far, our example Repair Query specifies CR program

fragments that perform strictly the desired symbolic transition, disallowing any CR that

may introduce extra semantic effects. However, as a practical consideration, it may be

desirable to search for program fragments that introduce extra semantic effects in addition

to the fixing effect. For example, sw_free performs cleanup and logging in addition to

resource freeing; in other cases, such side effects may be benign, or undesirable.

Fortunately, separation logic allows us to elegantly relax strict Repair Queries by

explicitly allowing for and then capturing extra semantic effects beyond the desired fix

effect. This produces a repair search method that can be parameterized by extra semantic

effects, explicitly partitioning such effects from the fixing effect (absent a priori knowledge

to the fixing effect). Such a search returns relaxed Repair Specifications of the form

{F ∗ P} CR {F ′ ∗ Q}, where (potential) extra semantic effects are bound in the pre- (P )

or postcondition (Q) respectively. Finding satisfying Repair Specifications comes with

an analogous extension of a Repair Query, i.e., {F ∗ P} ?C {F ′ ∗ Q}.

Pertinently, we can use frame inference in a novel way to solve two important (and

distinct) purposes in the program repair search problem: (1) Check whether a given

specification satisfies a repair query, and (2) discover the extra semantic effects not part
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of the fix. That is, suppose some command C has a footprint, expressed as {SP} C {SQ}.

Our first goal is to check whether the footprint satisfies the Repair Query, which we do

with respect to corresponding pre- and postconditions F and F ′. Our second goal is to

partition the footprint into the fixing transitions and extra semantic effects for pre- and

postconditions, respectively.

Our key insight is to perform the frame inference procedure Frame (Section 5.2)

on the footprint precondition (resp. postcondition) with respect to the Repair Query

precondition (resp. postcondition). Formally, C is a candidate repair fragment when the

following entailments hold:

In the precondition:

Frame(SP , F ) = P =⇒ SP ` F ∗ P (5.3)

Respectively, in the postcondition:

Frame(SQ, F
′) = Q =⇒ SQ ` F ′ ∗ Q (5.4)

We achieve (1) because the entailment does not hold (frame inference fails) when F is

not satisfied by the query. If frame inference succeeds, it pulls out P (resp. Q), discovering

the extra semantic effects in the footprint of C, achieving (2). Our approach is sound and

decidable by the frame inference procedure [50].

Assume F contains the specifications inferred over all individual commands in a program.

Algorithm 1: FindCandidates(R,F) returns all candidate Repair Specifications for

query R. In Line 4 and 5 of Algorithm 1, we use the frame inference procedure Frame, to

match candidate fragments with a repair query as the conjunction of matching pre- and

postconditions. Note that the procedure returns the entire Repair Specification because

we use assertions in the precondition for repair application (Section 5.3.3).
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Algorithm 1: Find Candidate Repair Fragments
1 Match(S,R);
2 let {RF } ?CR {RF ′} = R in
3 let {SP } C {SQ} = S in
4 if Frame(SP ,RF ) = RP 6= fail ⇒ SP ` RF ∗ RP

5 ∧ Frame(SQ,RF ′) = RQ 6= fail ⇒ SQ ` RF ′ ∗ RQ then
6 return {RF ∗ RP } ?CR {RF ′ ∗ RQ}[C/?CR]
7 else
8 return fail
9 end
10

11 FindCandidates(R,F);
12 C := ∅ // Candidates
13 foreach S ∈ F do
14 if Match(S,R) = C 6= fail then
15 C := C ∪ C
16 end
17 end
18 return C

5.3.3 Applying Repairs: from Logic to Programs

A Repair Specification in the abstract domain must be translated to a syntactic program

fragment in the source program. Every intermediate language (IL) instruction corresponds

to a line in the original program source. When a candidate program fragment is translated

from IL to source, we rename the program variable bound to pvar in the fixing fragment

to that of the fault-inducing variable, if necessary. This substitution is the only syntactic

modification that we make to discovered program fragments. Beyond this renaming, we

must

1. decide where to insert repairs and

2. check translated code for compatibility given associated heap assumptions, available

variables, and type information (available in the IL).

Determining repair location. Repair techniques typically rely on dynamic fault local-

ization techniques to determine placement or manipulation of code [39]. By contrast, we

rely on the static analysis to localize faults for repair: When the symbolic interpreter enters
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a fault state, it provides a location ` where the fault occurs.

In general, the fault class bears on the choice of where to apply a repair fragment.

This observation is consistent with motivating different choices of where to apply patches

automatically for approximate fixes in Chapter 4.8 To avoid null dereferences, our intuition

is that a developer might typically expect a change before the null dereference (e.g., a

check). This is consistent with our results in Chapter 4, where ground truth developer

fixes for null dereferences predominantly consist of a check preceding the bug-inducing

dereference. For resource leaks, we alternatively expect a change after the point at which

the resource is last used (e.g., closing a file). Using Infer, a null dereference reports the

location ` immediately preceding the dereference. For resource leaks and memory leaks, the

location ` is the point where the resource (resp. memory) goes out of scope without being

closed (resp. freed). We make the design choice to insert a repair fragment CR directly

preceding the program term at location `, satisfying

CR`′
,HBad;C`,HGood 6; fault

We refer to the example in Section 5.1 to motivate our choice. Our approach places

the sw_free call at line 11 in Figure 5.1a. The first motivation is that repair location is

typically restricted to few alternatives; the only other correct choice of placement is line 10.

The location ` thus offers the most immediate (and sometimes strictly) correct choice. The

second motivation is that among multiple placement locations, the semantic effects of repair

remain the same. For example, placing sw_free at line 10 in Figure 5.1a. produces the

same effect since the swWarn(...) statement does not affect the heap. Thus, although there

is no universally correct choice for repair placement, our domain of repair benefits from a

general strategy that preserves semantic correctness. Determining the ideal placement of

patches with respect to non-semantic attributes may vary by context, and may be subject

8cf. the difference between null dereferences (Section 4.4.2) and buffer overflows (Section 4.4.3).
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to stylistic conventions and human judgment that go beyond the scope of this work.

Determining patch compatibility. Patch compatibility determines whether we can

insert a syntactic program fragment at a particular program point (`, in our case). Foot-

Patch performs two compatibility checks. The first addresses bugs that can have multiple

candidates. For example, memory may be freed by the standard C library free call, or a

wrapper function such as sw_free as in Listing 5.1b. When multiple candidate fragments

in SIL matches the desired semantic effect (based on predicates that do not consider types),

FootPatch prioritizes patch generation by matching type information of a candidate

fragment’s variable and the fault-inducing variable. This means that FootPatch prefers

sw_free over free in our example, because we can infer the type of hmap to be swHashMap *,

which matches the same type of map in the candidate fixing fragment sw_free(map). Foot-

Patch falls through to matching candidates with generic types (i.e., void * for C) if it

cannot match specific types. Although typing information could be used to refine patches

for null dereferences, we ignore typing information in this case, since any object can be

compared to null.

Recompilation serves as our second compatibility check, ensuring (a) that syntactically

malformed patches fail (due to poor IL-to-source translation or fault locations), and (b)

that program fragments with unbound free variables are invalidated. For instance, the fix

for the bugs in Figure 5.2 binds to the variable id that is in scope. If id were not in scope,

patch generation fails. Relatedly, FootPatch allows capture of program variables (beyond

the fault-inducing variable) in fixing fragments if they are available (such as id, which is in

scope).

Syntactic barriers. Surprisingly, the need for syntax manipulation can present a final

hurdle to automated application in spite of the confidence inspired by a semantic-driven

repair approach. That is, syntax concerns persist even after extracting plausible program

fragments, reasoning about their semantic effects, determining repair location, and checking
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patch compatibility. For example, consider the following code, where a leaked file pointer is

reported for the variable fp:� �
if (fgets(line, 128, fp) == NULL)

return; // Infer reports that fp is leaked at this program point.� �
Suppose we have identified fclose(fp); as a possible program fragment that satisfies

a repair. Inserting the fclose statement poses a problem: we cannot naïvely insert it in

the correct position, right before the return; statement. The problem is that braces are

optional for if statements when the if-body contains only one statement. In the example

above, the braces are omitted. When more than one statement belongs to an if-body, braces

become mandatory. When we add the fclose statement, it needs to be in scope of the

if-body, and we must also preserve the return statement. The naïve insertion will cause the

program to always return unconditionally. Thus, we must add braces:� �
// Wrong: return always executes.
if (fgets(line, 128, fp) == NULL)

+ fclose(fp);
return;� �

Naïvely adding the fixing statement is wrong
because optional braces are omitted.

� �
// Correct: braces preserve scoping.
if (fgets(line, 128, fp) == NULL) {

+ fclose(fp);
return;

}� �
The desired fix requires a syntactic change that
adds braces.

Again, regular expressions are not generally expressive enough to easily and robustly

perform this change (cf. Section 2.2). Ideally we want to match the end of the if condition

(which can contain nested parenthesized expressions) and then surround the body in braces.

A reliable solution would be to use Clang for refactoring, which can correctly add the braces

around the if-body. The problem is again that Clang is susceptible to failure on certain

C files (cf. Section 4.4.2), and is also too heavyweight a solution (it requires an AST or

refactoring plugin). Coccinelle [132] offers a middle ground, but is C-specific; changing the

syntactic pattern above is also needed for similar fixes in Java, which Coccinelle cannot
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handle.9 Naturally, we use Comby, which was developed with these interests in mind: small,

targeted syntactic changes that work easily for multiple languages. The rewrite pattern we

use is simple, and adds braces to the if-statement (Figure 5.6). We then insert our fixing

fragment.

Match template� �
if (:[1])

return;� �

Rewrite template� �
if (:[1]) {

return;
}� �

Figure 5.6: The rewrite pattern adds braces around all if-statements that only have a return
in the body. Note that whitespace is matched insensitively (i.e., indentation level or spacing
does not matter; see Section 2.4.1).

There is flexibility in applying the above transformation. For one, we can preprocess the

entire project before running the repair. This can create many changes that are unrelated

to the fix, however, and may not be desired by project maintainers. Alternatively, we can

preprocess the entire project, perform repair, and then reverse the transformation (i.e.,

remove braces) for all if statements that contain only a return. The solution we opt for

approximates the textual range of the if-fragment for candidate repairs (when applicable),

then attempts the brace-addition transformation, followed by insertion. As a practical

matter, brace addition can shift lines of code with respect to analyzer-reported lines; thus,

transformations are applied starting toward the end of the file, working upward.

5.4 Evaluation

This section describes the results of using FootPatch to fix bugs in real-world programs.

Section 5.4.1 describes our experimental setup. Section 5.4.2 describes overall repair results,

where we use FootPatch to fix 55 bugs in 11 projects. In Section 5.4.3 we discuss patch

quality, and particularly its relationship to Infer’s underlying static analysis and our other

9Moreover, similar syntactic features also exist in functional languages, like OCaml
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design decisions. Section 5.4.4 analyzes FootPatch’s repair discovery for resource leaks,

memory leaks, and null dereferences in the context of our general formalism (Section 5.3).

Section 5.5 provides limitations and further discussion.

5.4.1 Setup

Implementation. Based on the techniques described above, we implemented an automatic

bug repair tool called FootPatch extending the Infer static analyzer. FootPatch works

on multiple source languages (we evaluate on programs in C and Java; Infer also supports

C++ and ObjectiveC) because, like Infer, it reasons over programs translated into SIL.

FootPatch uses the same predicates in the IL irrespective of source language, meaning it

can apply directly to new languages as support for them is added to Infer.

{ pvar Z⇒ Null } ?C { _ Z⇒ Exn e } (5.5)
{ pvar Z⇒ 〈 Alloced, File 〉 } ?C { pvar Z⇒ 〈 Freed, File 〉 } (5.6)

{ pvar Z⇒ 〈 Alloced, Memory 〉 } ?C { pvar Z⇒ 〈 Freed, Memory 〉 } (5.7)

Figure 5.7: Repair Specifications.

FootPatch uses three general specifications for repairing null dereferences, resource

leaks, and memory leaks; Figure 5.7 presents the specifications in the notation explained in

Section 5.2.1. The specifications are implemented as OCaml functions that match pre/post

conditions on heap state and predicates (including Infer’s datatypesfor File, Memory, and

Exn predicates). Note that this specification mechanism is not intrinsic to the technique (i.e.,

it is possible write a DSL for expressing such specifications). FootPatch performs type

matching for determining patch compatibility, (Section 5.3.3) by extending specifications

(6) and (7) in Figure 5.7 with an optional guard clause “when pvar.type = t” if we can

determine the type t of a faulting variable. In general, since simple expressions do not

model semantic effects of interest to the bug types in question, we restrict repair queries to

calls and branch statements in the IL.
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Data and experimental parameters. We ran our experiments on an Ubuntu 16.04 LTS

server, with 20 Xeon E5-2699 CPUs and 20GB of RAM. Table 5.1 includes projects which (a)

successfully built on our system, (b) could be analyzed by Infer, and (c) generated patches.

Our project selection represents a convenience sample, intended to substantiate our claims

about FootPatch applicability to real bugs in real and actively developed open-source

systems; we include discussion of sources of failures and other technique limitations in

Section 4.5. We evaluate on 8 C programs and 3 Java programs averaging 64 KLOC. We

initially developed FootPatch based on existing bugs in error-prone and jfreechart and

new bugs found in swoole. The rest of the projects are C and Java repositories on GitHub

that are either (a) randomly sampled from the top one thousand most popular repositories

(by user favorites, or stars, in November, 2016) for C and Java respectively, or (b) contain

any combination of the terms “leak”, “resource”, “memory”, “file”, or “fix” in their commit

messages. Projects in our sample are excluded if they fail to compile in our environment, if

they cannot be analyzed by Infer, or if FootPatch did not find patches (either because

no bugs were found or due to some other failure).

We evaluated FootPatch in two modes to characterize its search behavior. In callgraph-

local mode, FootPatch searches over candidates from the callgraph of functions where

Infer reports a bug. This mode tracks whether candidates are found local to the function

containing the bug, local to the file containing the bug, or from an external file. In

global mode, FootPatch searches over all (disjoint) callgraphs. Global mode subsumes

callgraph-local mode and, in our experiments, only discovers additional repair candidates

in external files not included in the local callgraph. Global mode is naturally more time-

intensive, but may identify additional patches; comparing the two modes allows a more

precise understanding of the importance of locality in searching for bug fixes within a given

program. In all results discussion, ∆GL indicates the increment searching globally has over

searching locally.
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Time Bug Max Fixes
Project Lang KLOC (s) ∆GL Type Bugs Cands ∆GL TP ∆GL FP ∆GL

Swoole C 44.5 20 +83 Res. Leak† 7 1 +6 1 +2 0 +0
Mem. Leak† 20 3 +0 6 +0 3 +0

lxc C 63.0 51 - Res. Leak 3 5 - 1 - 0 -
Mem. Leak 8 13 - 0 - 1 -

Apktool Java 15.0 584 +92 Res. Leak† 19 3 +2 1 +0 0 +0
dablooms C 1.2 9 +0 Res. Leak† 7 2 +0 7 +0 0 +0
php-cp C 9.0 20 +5 Res. Leak† 4 3 +1 1 +0 0 +0
armake C 16.0 10 +13 Res. Leak† 5 7 +4 4 +0 0 +0
sysstat C 24.9 28 +10 Res. Leak 1 10 +0 1 +0 0 +0
redis C 115.0 79 +121 Res. Leak† 8 8 +10 6 +0 0 +0
rappel C 2.1 7 +3 Mem. Leak† 1 6 +0 1 +0 0 +0
error-prone Java 149.0 262 +602 Null Deref 11 66 +0 2 +0 0 +0
jfreechart Java 282.7 1,268 - Null Deref 53 221 - 22 - 0 -

Table 5.1: Bugs repaired with FootPatch. “Bugs” is the number of bugs detected by Infer’s static analysis. “Max Cands”
is the maximum number of IL repair candidates for the bug (pre-compatibility check). “Fixes” are the number of unique
patches fixing true positive bugs (post check). “FP” is the number of false positive bugs reported by Infer (determined by our
human inspection) for which FootPatch produces a patch. † indicates one or more fixes for previously undiscovered bugs.
“∆GL” is the change in associated column when using the global search space.
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5.4.2 Repair Results

Table 5.1 show results for each project. “Bugs” indicates the number of bugs detected by

Infer of the given type. It is possible for multiple semantic fragments to repair each type

of bug, found at different locations in the SIL callgraph. For each bug type per program,

“Max Cands” shows maximum number of IL repair candidates before the compatibility

check which determines whether a patch candidate is suitable syntactically. FootPatch

emits the first compatible patch produced from the candidates. “Fixes” shows the number

of unique patches that fix true positive bug reports. Conversely, Infer may report false

positives. The “FP” column shows the number of unique patches that we generate for

false positive bug reports. It is out of scope for FootPatch to distinguish true and false

positive bugs; we manually inspected bug reports and patches to qualify the overall utility

for building automatic repair on top of an industrial static analyzer (i.e., false positives

are few, and most patches correctly fix true bugs). We elaborate on patch quality and

correctness in Section 5.4.3.

In total, we discover 24 fixes for resource leaks, 7 fixes for memory leaks, and 24 fixes

for null dereferences. The “Time” columns of Table 5.1 shows total time required to both

find and patch all bugs of all types considered in that program. Performance ranges from 7

seconds to 22 minutes over all projects (note that FootPatch performance is intertwined

with Infer’s analysis time). The jfreechart experiment failed to terminate in global mode

because the Infer analysis phase ran out of memory; lxc failed to build in the global

configuration.

Global mode (∆GL) discovers only 2 additional fixing patches. These patches fix

resource leaks due to discovering a close-like function that is not present in the local search.

Our results suggest that localizing search for fixing fragments is an effective strategy for

repair. This is consistent with empirical results that suggest that code is redundant locally,

especially within a module [193].
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� �
1 fp = fopen(rdbfilename,"r");
2 ...
3 if (memcmp(buf,"REDIS",5) != 0) {
4 rdbCheckError("Wrong signature trying to load DB from file");
5 + fclose(fp);
6 return 1;
7 }
8 rdbver = atoi(buf+5);
9 if (rdbver < 1 || rdbver > RDB_VERSION) {

10 rdbCheckError("Can't handle RDB format version %d",rdbver);
11 + fclose(fp);
12 return 1;
13 }
14 ...� �
Figure 5.8: fp can be leaked on at least two paths (lines 6 and 12), but Infer short circuits the
analysis and only reports the leak on line 6 by default. With FootPatch, the leak is fixed at line
6, allows Infer to find the another resource leak, which is then also fixed at line 11.

5.4.3 Patch Quality

Patch correctness and success. All produced patches ensure a fault-avoiding interpre-

tation; in practice, we apply each patch generated by FootPatch and rerun the static

analyzer to see if the patch removes the bug (all did). Where possible, we ran a project’s

test suite after applying our patches to validate that our changes do not break tests. We

successfully ran the test suites for Apk-tool, armake, and error-prone, which pass. Two

projects contained no tests, and the remaining six test suites could not be successfully

configured/built.

A “fix” in Table 5.1 produces a patch that addresses a true positive bug report from the

static analysis. To be useful in practice, analyses approximate [142]. Infer is no exception,

and it sometimes skips inferring specifications for a function due to an analysis timeout,

continuing with partial results. This can lead to false positives. FootPatch uses Infer’s

results to perform patching, and cannot distinguish between true and false positives (if it

could, it would be a better analysis than Infer. It is especially interesting, however, that

our approach for tailoring programs (Chapter 3) presents the potential of removing Infer’s

false positives when bug reports are used for performing repair. A manual inspection of
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Infer’s reports indicate that its false positives generally arose when it failed to analyze

loops or clean up functions due to time out. Due to the low number of false positives,

we did not investigate deeply how tailoring may address these in our experiments. Due

to the complexity of jfreechart it is difficult to precisely determine how many of the

Infer-reported null dereferences are false positives. However, our manual inspection did

not reveal obvious errors in reasoning behind the produced patches. False positives that

produced patched bugs are listed in column “FP” of Table 5.1. In general, the false positive

rate is low, on the order of 7%, where fixes are produced for false positive error reports

(“FP” column) compared to fixes for true positives (“Fixes” column).

On the other hand, Infer may find bugs that do not result in a fix (there are typically

more “Bugs” than “Fixes” in Table 5.1). FootPatch finds 55 fixes out of 145 bugs

(excluding false positives). Patch generation fails when no repair candidate can be found

for the bug. Generally, this happens when (a) Infer’s analysis times out (e.g., due to loops),

leading to incomplete function specifications or short circuited analysis that miss fixing

fragments, (b) Infer does not resolve program variables associated with a bug report, (c)

no type compatible fragments are discovered, or (d) memory time outs occur for parallel

analysis processes, short circuiting analysis results.

Patch location. As motivated in Section 5.3.3, FootPatch heuristically places fix code

at the line where Infer reports the violation. For resource and memory leaks, feasible repair

locations are constrained by the number of lines at which the resource is no longer in

use, but before it is officially dead. In our data, the maximum number of possible correct

locations across all 31 fixing patches for resource/memory leaks is 3, while the average is

1.7. This implies little opportunity to vary placement outside of our convention, similar

to our motivating example in Figure 5.1a. For null dereferences, checks may plausibly be

placed anywhere between the point at which an object becomes null and its dereference.

Our inspection based on Infer’s bug reports revealed that the number of locations ranges
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� �
1 int fd = open(filename, O_RDONLY);
2 ...
3 swString *content = swString_new(filesize);
4 if (!content) {
5 + close(fd); // FootPatch repair
6 return NULL; // function returns with fd not closed
7 }
8 ... // continues with normal operation� �

Figure 5.9: Resource Leak: forgetting to close a file.

from 1 to 30, which poses more variability for placement.

Patches reveal more bugs. An especially interesting implication of unifying bug detection

and repair is the potential for the latter to extend the capabilities of the former. In our

experiments, FootPatch generated patches for the redis project that then allowed Infer

to find two additional unique bugs. Figure 5.8 shows a snippet of the code in question.

The fp file pointer leaks on at least two paths (lines 6 and 12). Before patching, Infer only

reports a resource-leak for the variable fp, because it “short circuits” its analysis once the

first leak is detected. After FootPatch inserts fclose(fp); on line 5, Infer reports the

second leak on line 11. Rerunning FootPatch yields an additional fix on line 11. To the

best of our knowledge, this is the first demonstration that automated patching has the

potential to improve static analysis.

5.4.4 Fixing by Semantic Effects

Resource and Memory Leaks. Resource leaks often occur when a function returns pre-

maturely due to an error [14, 205]. Figure 5.9 shows a leak of an unreleased file handle in the

Swoole10 project. FootPatch uses the Repair Query { pvar Z⇒ 〈Alloced, File〉 } ?C { pvar Z⇒

〈Freed, File〉 } from (6), Figure 5.7, to discover a close(fd); elsewhere in the program.

This demonstrates the importance of the compatibility check, which guards against applying

alternative “close” operations (e.g., fclose) by using typing information. The pull request

10Swoole is the 34th most popular C project on GitHub at the time of writing.
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based on the patch in Figure 5.9 was accepted,11 an important milestone for end-to-end

automatic repair of a previously undiscovered bug.

Note that, although conceptually similar to resource leaks, memory leaks deserve

separate semantic treatment because they tend to occur in programs written in languages

that are not garbage collected. Anecdotally, memory leaks may entail more complex

fixes in terms of semantic effects. All resource leak patches conform to strict Repair

Specifications (meaning they only affect the heap location of interest). However, fixing

fragments for memory leaks may entail extra semantic effects. One example fragment is

swHashMap_node_free(hmap, root); from the Swoole project, which frees a data member

root that is in the table hmap. A necessary precondition to inserting this fragment for

freeing root is that hmap be in scope (which it is, where it is used in our produced patches).

We obtain such a fragment by relaxing the Repair Query to allow extra semantic effects.

One implication of relaxing repairs is that application may be contextual, and subject to

additional compatibility checks (e.g., scope and variable capture) with respect to extra

semantic effects. In summary, our results show that the majority of leak fixes conform to

strict Repair Specifications, but relaxing the repair constraint enables more complex

fixes.

Null dereferences. The FootPatch patch for the null dereference(s) in Figure 5.2

throws an exception when an object is null. However, in general, multiple semantic fix

effects may address a given null dereference: initializing a null object, returning or throwing

an exception when an object is null, or predicating execution on a condition that an object

is not null. More than one of these forms may be correct with respect to preserving a

non-null property, and in general we cannot decide which one is preferred [143].

We therefore experimented with Repair Specification queries in FootPatch over

multiple SIL commands to discover null dereference fixes (i.e., function calls entailing

nullness checks, conditional expressions). Our approach alleviates the problem of multiple
11https://github.com/swoole/swoole-src/commit/e12c7db38c9737234695d35d9
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potential fixes by relying on existing code to guide repair. For example, for jfreechart,

FootPatch produces 22 patches from a candidate which throws an exception when the

object is null. This may be the desirable fix, as witnessed by human-written fixes for the

error-prone bug [9]. Regardless, from a semantic perspective, FootPatch finds candidate

fixes from the existing project that removes the fault with respect to the analysis.

5.5 Limitations and Discussion

FootPatch currently fixes resource leaks, memory leaks, and null dereferences; these

bugs are a mature focus of Infer’s analysis domain and are common in practice [59, 61].

Given both our underlying technique, which addresses general heap-based properties, and

the continual addition of new analyses to Infer [12], we expect FootPatch to generalize

to, for example, information flow bugs. FootPatch currently requires a simple manual

fix specification, generally per bug type. This formulation provides flexibility to address

particular attributes over diverse bug classes and languages. The manual effort is competitive

with effort required to produce a test per bug, required by dynamic repair techniques.

Moreover, we recognize an opportunity for automatically inferring fixing effects with the

aid of a static analyzer, for future work.

FootPatch does not consider the full diversity of possible fixes for the considered

defects, especially for null dereferences (we investigated checking nullness and throwing an

exception, accepted ways for fixing these bugs, but not instantiating new objects generally).

Our approach currently inspects only semantic patch characteristics, ignoring, for example,

string constants in an error message. We leave such considerations to future work.

Beyond false positives, Infer can produce inaccurate fault locations, impacting the

validity of FootPatch patches. Approximate locations are acceptable for bug reports, and

approximate patches may still be informative [204], but truly automated program repair

requires precise locations. This can be addressed practically by improving the accuracy of
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IL-to-source translation during analysis.

We do not explicitly compare our technique to prior repair techniques. Overall, Foot-

Patch is orthogonal (and thus difficult to compare) to prior dynamic repair techniques.

Two of our bug classes, resource and memory leaks, are difficult to test for determinis-

tically, and thus underaddressed in the current repair literature. There does exist work

addressing repair of null dereferences, which are easier to expose via tests. We attempted

to run and fix the null dereferences in Apache Commons Math considered by NOPOL [211].

However, Infer’s analysis skips a number of intermediate calls, and fails to detect the null

dereferences covered in the associated test suite. Practically speaking, we find that tests for

null dereferences considered in prior work (such as Defects4J [118]) simply cover different

null dereference bugs from Infer. This highlights one property of static analysis for repair:

analysis may miss bugs that could be covered by tests, but may simultaneously find those in

corner cases that humans neglected to test. Related techniques based on verification [143]

lack detailed breakdown of bugs to inform a comparative study, and is intended to provide

patch suggestions to a developer, which lacks automatic patch application. We are unaware

of “quick fix” suggestions from existing static tools [9, 10, 116] that target semantic bugs

like those we consider.

5.6 Related Work

Work in automatic program repair over the past decade predominantly use test cases to

validate correctness. Generate-and-validate or heuristic repair techniques explore search

spaces of templated repairs as applied to the abstract syntax tree program level; this

includes techniques like GenProg [135], RSRepair [180], and HDRepair [133] which traverse

the space using classic search algorithms like genetic programming or random search. Other

techniques like AE [207] SPR [146] and Prophet [145] use predefined transformation schemas

and probabilistic models on the AST to discover and apply candidate syntactic fragments.
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At a high level, such techniques operate on ASTs to indirectly achieve a desired semantic

effect that fixes a bug with respect to a test suite. Constraint- or semantics-based approaches

reason about semantics more directly, synthesizing fragments using input-output pairs to

codify a notion of program semantics [153, 154, 164, 211]. SearchRepair [120] lies between

these approaches, using input-output pairs to search over a semantic encoding of candidate

repair fragments (and is perhaps closest in spirit to our approach). These techniques all

share the property that they use test cases to define patch correctness and guide a search

towards a semantically-desirable fix; as a result, they also require developer labor to specify

those tests; are limited to fixing bugs that are deterministically testable, and may overfit to

the provided tests [190]. The main point of contrast with our work is that our approach

is static, and therefore cannot overfit to provided dynamic witnesses of desired behavior.

In the previous body of work, properties are not specified formally, but implied by test

cases. FootPatch instead considers a logic-encoding and semantic implications of using a

program fragment for satisfying repair specification. We argue that our focus on explicitly

codifying semantic effects offers additional protection against patch overfitting. Gao et

al. address memory leak fixes for C by inserting a free statement [92]. In contrast, our

approach identifies fixing fragments based on inferred semantic traits. Although we rely

on function models, our approach does not assume any semantic effects of a function call,

like free. This allows FootPatch to generalize to multiple languages and also identify

project-specific fixes (like free wrapper functions).

Verification-based approaches, using formal specifications, have used LTL specifica-

tions [115, 202], SAT approaches [97], deductive synthesis [126], contracts [143], and model

checking for Boolean programs [100, 188] to perform repair. At a high level, our approach

relates to the approach by Logozzo et al. [143] which uses automatically inferred assertions

over abstract domains, and relies on an abstract interpretation-based static analyzer to

discover faults; however, they do not consider automatically applying patches. In contrast,

our approach is new in reasoning over an abstract domain based in separation logic (repair-
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ing pointer safety violations) and formalizes a mechanism for automatic patch application.

Overall, verification-based program repair lack application to common bugs in real-world

programs. Adjacent to our work, recent techniques in program synthesis use separation

logic encodings to generate heap-manipulating programs from program fragments [179].

5.7 Summary

We presented a new static APR technique using separation logic to reason about semantic

effects of program fragments, including a novel application of local reasoning and the frame

rule to find bug-fixing patches from existing code. Our technique overcomes significant

challenges compared to test-based repair techniques, including the ability to repair previously

undiscovered bugs, bugs that are difficult to expose via testing, and repeated semantic

errors. We implemented our approach in a tool called FootPatch that builds on top

of a separation logic-based analysis to target bug repair for heap-related properties. We

demonstrated our approach on resource leaks, memory leaks, and null dereferences (we

elaborate on possible extensions in Section 4.9). FootPatch fixes 55 bugs, including 11

undiscovered bugs in 11 projects. Moreover, FootPatch achieves significant speedup

over test-based repair, works on large codebases, and targets multiple source languages.

Unlike other formal approaches for program repair, FootPatch works end-to-end on

existing code bases and does not require formal annotation or special coding practices. Its

reliance on principled semantic reasoning provides additional evidence of generated patch

correctness. FootPatch thus represents an important step in bridging the gap between

grounded verification techniques and trustworthy automatic program repair for real-world

software, opening promising avenues in automatic program improvement. We envision

direct application of future APR techniques for improving static analyses (as discussed in

Section 5.4.3) and auxiliary applications like Semantic Crash Bucketing that benefit from

ground truth fixes (Chapter 4).
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Chapter 6

Conclusion and Future Work

6.1 Summary

This dissertation focused on the thesis that automated search and application of program

transformations enables efficient, scalable, and unassisted techniques for improving the

effectiveness of existing program analyses and repair of real-world programs. The premise

of the work is that automated program transformation affords new ways to overcome

limitations in existing techniques to improve software quality. We focused predominantly

on domains that continue to incur substantial human effort despite the relative success of

relevant automated techniques. In particular: discerning true and false positives in static

analysis, discerning true bug reports versus duplicate reports in dynamic fuzz testing, and

correctly fixing bugs.

Developing new techniques where program transformation is a first order concern

requires (in whole or in part) a flexible way to generally manipulate syntax. Our solution is

a multi-language approach to declarative program transformation using match and rewrite

templates, which we presented in Chapter 2.

In Chapter 3 we developed a method for tailoring programs (in particular, using

declarative templates enabled by Chapter 2) with the objective to improve static analysis
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fidelity. We showed that tailoring programs with selective transformations can improve

analysis by reducing the number of false positives reported without adversely affecting

analysis behavior. One particularly appealing aspect of our solution is that it presents new

ways for addressing long-standing, challenging, and unresolved issues in static analyzers

(Section 3.2).

In Chapter 4 we introduced a new method for deduplicating bug reports as a function

of program transformation. We proposed to automatically generate approximate fixes that

simulate true developer fixes to discriminate the set of (potentially duplicate) crashing input

variants discovered during fuzz testing. We incorporated semantic predicates (using dynamic

trace information) and syntax transformation (using Chapter 2) to drive an automated

approach for bug class specific approximate fixes. The main result showed that approximate

fixes are sufficiently accurate to precisely discriminate duplicate crashes compared to true

developer fixes, and outperforms generic heuristics in current deduplication methods.

Finally, we presented a new automated program repair approach for correctly fixing

bugs by extending an existing static analysis (Chapter 5). This approach stands in contrast

to the predominant methods in automated repair approaches which rely on tests to detect

or validate bug fixes, and are therefore limited to fixing only known bugs. A primary benefit

of our approach is that we leverage existing automated reasoning for defect detection in the

analyzer to fix previously unknown bugs. Moreover, we show that the domain of analysis

(i.e., separation logic) enables a new way to search and apply semantically correct fixes.

Our work demonstrates pertinent interrelated concerns that influence the effectiveness of

automated techniques for software quality. For example, we saw that our automated repair

approach (Chapter 5) depends on the precision of the underlying analysis—if the analysis

produces a false positive report, then we may produce a patch that “repairs” that false

positive. However, we showed that we can tailor programs to remove false positives with

transformation (Chapter 3). Thus, program tailoring not only improves defect detection,

but also presents potential for improving the effectiveness of automated program repair. In
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the other direction, we have evidence that our repair technique (Chapter 5) can surface

and fix more true positive bugs after an initial fix is applied. Thus, automated repair (i.e.,

achieved by using deeper semantic reasoning) presents further opportunity to amplify the

effectiveness of static analyses and bug detection. Lastly, the continuing development of

mature and precise automated repair techniques for various bug classes could provision

actual fixes in place of approximate fixes (as developed in Chapter 4) to broadly improve

dynamic fuzz testing in finding and classifying unique bugs.

The techniques in this dissertation would have limited merit if they could not be shown

to work effectively on real programs. We therefore evaluated on large, popular programs to

demonstrate that all of our techniques scale to the demand of actively developed software.

We showed that these techniques are effective in each domain: relative to existing techniques

and approaches, we improved in our ability to easily change programs (Chapter 2), reduced

analyzer false positives (Chapter 3), reduced duplicate bug reports (Chapter 4), and repaired

previously unknown bugs (Chapter 5). We showed that our techniques are unassisted,

modulo up-front specification. Up-front specification is generally easy (via declarative

templates; Chapters 2 and 3), or low-effort (i.e., specifying semantic traits that are general

per bug class; Chapters 4 and 5). Our evaluation substantiates the claims that these

techniques work effectively on large, popular programs and present the prospect of real-

world adoption.

6.2 Open Questions and Research Pursuits

We close with open questions and ongoing research pursuits for the work presented in this

dissertation.
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6.2.1 Extending Automated Program Repair to Additional Bug

Classes

Extending our flavor of automated repair in Chapter 5 to handle additional bug classes

presents a natural and compelling case for current industry needs. Our intuition is that

semantic search and application using pre- and postcondition effects extends generally

to bug classes like use-after-free bugs, integer or buffer overflows bugs, and information

flow bugs. While separation logic is fit for heap-properties, we expect that additional bug

classes will impose the use of alternative abstract domains [83]. For example, repairing

information flow bugs would likely entail a taint model, and fixing fragments may concern

the introduction or removal of taint flows.

An outstanding challenge is that effective static analyses (like those considered in

Chapter 3) are not typically implemented with program repair in mind. As a concrete

example, we showed that searching over semantic effects of individual program fragments

finds desirable fixes that conform to existing project conventions (Chapter 5). However, the

intermediate states of individual program fragments are usually discarded by an analysis.

From a bug-finding perspective, intermediate states tend to become irrelevant once a

violation is found, or once the effects of a function are summarized. Strikingly, these

intermediate states provide key data for reasoning incrementally and compositionally about

changing parts of programs. Our experience adapting an existing analysis revealed that

reasoning and manipulation of intermediate state is scattered across the implementation,

making the task difficult and brittle. Program repair as a first class concern thus imposes

new considerations for designing and optimizing analysis domains and implementations.

Our position is that program repair, building on static analysis, will truly thrive when

interfaces for exposing intermediate state representation and reasoning become a first order

concern.
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6.2.2 Cooperative Automated Program Repair and Program Anal-

ysis

We showed that targeted program transformations improves static and dynamic analyses

(Chapters 3 and 4). This can in turn improve the fidelity of automated repair. In the

reverse direction, automated program repair can reveal new bugs in static analyses, or

substitute real fixes for approximate ones in dynamic settings (Chapters 5). Our work

broadly reveals the potential for cooperative interaction between automated program repair,

program transformation, and analysis for the first time. We envision that as automated

program repair matures, it will find increasing application in directing and improving

analyses. Much remains to be explored in the space of cooperative repair and program

tailoring in tandem with symbolic execution [42, 58, 157], runtime verification [103, 148],

testing [93] and testability transformation [107, 108].

6.2.3 Inference in Place of Up-front Specification

The techniques in this dissertation generally start with varying forms of up-front specification

to initiate an automated process. Syntactic transformation and program tailoring entail the

specification of declarative match templates (Chapters 2 and 3). Semantic Crash Bucketing

(Chapter 4) uses declarative templates and semantic predicates using dynamic traces to

inform patch application. FootPatch (Chapter 5) relies on small specifications per bug

class that express desirable semantic pre- and postconditions to identify candidate patches.

Automatically inferring these specifications presents an appealing direction to increase

efficiency and generality to additional bugs. At a high level, ease and utility of inference

is subject to the complexity of the technique and bug class in question. For example,

causal relationships between program semantics and analysis behavior can be inferred by

speculatively adding or removing program fragments (e.g., via counterfactual reasoning [65]).

At a syntactic level, we may infer changes from historic commits that work around static
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analysis issues (as in Section 3.1) to better tailor programs. However, inference towards

fully autonomic procedures is not always desirable or applicable. Concretely, program

tailoring for static analysis may entail program transformations that are only desirable

as a temporary suppression mechanism, and not for persisting in code (Section 3.4.3).

Similarly, allowing a mechanism where developers and security practitioners can integrate

their specialist knowledge into an automated process (like fuzzing and crash deduplication in

Section 4.1) is a desirable trait that remains attractive in the absence of inferred properties.

Ultimately, inferring automated transformation presents a complementary approach to the

techniques discussed.

6.2.4 Automation and Integration with Developer Workflows

Automation is a key trait for increasing developer efficiency and software quality techniques.

However, automated processes are not necessarily fully autonomous: surrounding an

automated process are humans who regularly configure, deploy, and monitor the process.

As discussed in Chapter 3, developers are sensitive to whether tools can integrate into

existing workflows [116]. Thus, automated techniques must integrate with existing software

processes like continuous integration and testing to be effective [152]. Facilitating this

integration for large scale program transformation and repair is an open problem. One

appealing direction is the use of automated agents: software bots that bridge the gap

between human software development and automated processes. Our position is that repair

bots (e.g., [83, 195] present new ways for orchestrating the unique capabilities that come

with automated refactoring and repair. We share these thoughts in greater detail in a

separate publication of ours [198].
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6.2.5 Enriching Declarative Transformation with Semantic Infor-

mation

Automating code changes that require semantic information (e.g., types) is difficult, and

especially so at scale [210]. Such sophisticated transformations are usually implemented in

complex frameworks by experts who have deep knowledge of a language’s representation and

tooling (e.g., Clang for C/C++). Our goal with Comby is to make program transformation

simple and flexible, as an alternative to understanding underlying language ASTs and visitor

frameworks. At the time of writing, we are in the process of extending Comby to make use

of the rich semantic information available to language specific tools (like types, scoping,

and def-use relationships) so that sophisticated transformations are more accessible across

multiple languages. As a concrete example, this extension allows us to use type information

in the presence of syntactic ambiguity to discern wrong transformations (as in Section 2.5.1

for Go).

Our approach relies on recent efforts using the Language Server Protocol (LSP) [33].

The LSP standardization makes it possible to query semantic information (e.g., types)

for a project hosted in a central location (where compilation and semantic information is

cached). Such queries are thus efficient and generalize to multiple languages. We see LSP

as a promising development towards decoupling static semantics from program syntax and

locally managed compilation. While we do not aim to reach feature parity with existing

language-specific tooling (like Clang), there is broad appeal in delivering a declarative

method of program transformation using semantic attributes to developers at large.

There is increasing uptake and a pressing industry need for automating code changes,

from automated dependency updates [30] to API migrations [210]. We anticipate that

improving the accessibility, sophistication, and efficiency of the automated program trans-

formation techniques in this dissertation rises to the challenge of current and future needs.
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