
A Panel Data Set of Cryptocurrency Development
Activity on GitHub

Rijnard van Tonder∗, Asher Trockman†, Claire Le Goues∗
∗Carnegie Mellon University, †University of Evansville

rvt@cs.cmu.edu, asher.trockman@gmail.com, clegoues@cs.cmu.edu

Abstract—Cryptocurrencies are a significant development in
recent years, featuring in global news, the financial sector, and
academic research. They also hold a significant presence in open
source development, comprising some of the most popular repos-
itories on GitHub. Their openly developed software artifacts thus
present a unique and exclusive avenue to quantitatively observe
human activity, effort, and software growth for cryptocurrencies.
Our data set marks the first concentrated effort toward high-
fidelity panel data of cryptocurrency development for a wide
range of metrics. The data set is foremost a quantitative measure
of developer activity for budding open source cryptocurrency
development. We collect metrics like daily commits, contributors,
lines of code changes, stars, forks, and subscribers. We also
include financial data for each cryptocurrency: the daily price
and market capitalization. The data set includes data for 236
cryptocurrencies for 380 days (roughly January 2018 to January
2019). We discuss particularly interesting research opportunities
for this combination of data, and release new tooling to enable
continuing data collection for future research opportunities as
development and application of cryptocurrencies mature.

Index Terms—cryptocurrency, open source software, github,
software metrics, software quality

I. INTRODUCTION

Cryptocurrencies are a significant development in recent
years, featuring in global news, the financial sector, and
academic research [1]–[3]. In the last three years, hundreds
of new cryptocurrencies have appeared and many adopt
an open source approach to software development. Popular
cryptocurrencies hold a significant presence in open source
development. For example, software repositories for Bitcoin
and Cardano rank in the top 10 most popular projects (by
GitHub stars) for the C++ and Haskell languages, respectively.
Software is central to how cryptocurrencies function, and thus
their openly developed software artifacts present a unique and
exclusive avenue to quantitatively observe human activity, effort,
and software growth. Despite this opportunity, little effort has
gone into collecting related data and metrics.

Our data set marks the first concentrated effort toward a
panel (i.e., longitudinal) data set of cryptocurrency development
for a wide range of metrics. Our data set is foremost a
quantitative measure of developer activity for budding open
source cryptocurrency development. We collect (among other
features) the number of daily commits, contributors, lines
of code changes, stars, forks, and subscribers for thousands
of repositories over hundreds of cryptocurrency projects on
GitHub. We also include financial data for each cryptocurrency:
the daily price and market capitalization.

Our contribution includes new tooling for collecting, aggre-
gating, and exploring the data metrics of interest. Our method
actively polls GitHub and financial market data every 24 hours.1

This enables (a) collecting exclusive data compared to existing
archival techniques (e.g., GHTorrent [4] misses repository
subscriber information, which is unfortunately not exposed
in GitHub’s event stream API), (b) online data collection
from financial markets over time, and (c) configurable data
aggregation and exploration over multiple repositories.

We describe our data collection method in Section II and data
set content in Section III. We discuss on research applications in
Section IV; Section V discusses potential future improvements,
and concludes.

II. DATA COLLECTION

Data source. We collected all of our software metric data from
GitHub, where the vast majority of open source cryptocurrency
development takes place.2 We collected cryptocurrency mar-
ket capitalization, price, and volume from CoinMarketCap,3

currently one of the leading sites indexing cryptocurrencies.

Metrics collected. Table I summarizes the metrics we collected
for each repository every 24 hours. The metrics broadly
communicate size and growth of projects (in terms of, e.g.,
developer activity or repository stars) and recency of active
development over time. The number of repository forks,
subscribers, and last update are all short-lived values over
time: GitHub provides only a single field that is overwritten
as the values are updated. Our data set is unique in storing
the full spectrum of these values over time for 236 popular
cryptocurrencies. The data set further includes the number
of commits and lines of code added and deleted over the
previous 24 hours. We also calculate the number of unique
active developers by commit in the last 7 days on each day.

We also collect statistics calculated by GitHub
(/:repo/stats), which are generally of a coarser granularity.
GitHub statistics do not track popularity metrics, fine-grained
developer activity, or live 24-hour updates. The GitHub
statistic data is, however, convenient and complementary for
tracking a subset of our finer-grained collection over a longer
period of time. The contributors endpoint provides a list

1The time interval can be configured by the user.
2Other code hosts, like BitBucket and GitLab, are not currently supported.

Some metrics that we track (e.g., stars) are not supported in BitBucket.
3https://coinmarketcap.com

https://coinmarketcap.com

Metric GitHub Endpoint

of repository stars

/:repo
of repository forks
of repository subscribers
Time since last repository update†

of commits in the last 24 hours
/:repo/commits# of contributors in the last 7 days

of lines of code added &
/:repo/commits/:shadeleted in the last 24 hours

of contributors during
/:repo/stats/contributorsrepository lifetime

of commits in the last year /:repo/stats/participation

of lines of code added &
/:repo/stats/code_frequencydeleted in the last year

TABLE I: Metrics collected for each repository every 24 hours and
the associated GitHub endpoint we queried. Short-lived data that is
not historically available on GitHub include stars, forks, subscribers,
and repository update times. We record the update time (†) as the
most recent update time by either recent commit time, or the update
time reported by :repo (since the latter also considers, e.g., user
updates to a repository description, but can sometimes be stale with
respect to recent commits).

of contributors over a repository’s lifetime. GitHub limits the
contributor list size to 100 contributors. The participation

endpoint provides the weekly aggregate number of commits
for the past year. This data provides a coarse historic log of
commit activity, but is also transient (bounded by the last 52
weeks). The code_frequency endpoint provides the weekly
aggregate of code changes over the repository lifetime.

In addition to the time-varying data in Table I, we also
recorded two pieces of static metadata for each respository:
(1) whether it is a forked repository and (2) the programming
language (determined by GitHub’s Linguist library4).

A single repository may have multiple branches. Branches
facilitate various development workflows (e.g., Gitflow) and
certain branches may become stale over time. We collect data
for the default branch of the repository as recorded by the
:repo endpoint on GitHub (this is typically the master branch,
but it sometimes deviates to accomodate alternative workflows).
GitHub statistics are also calculated on the repository’s default
branch.

Included projects and collection timeline. We started collect-
ing data on January 21, 2018. Our procedure to include projects
went as follows: (1) We ranked the top 339 cryptocurrencies by
market capitalization (as per CoinMarketCap) on January 21,
2018; (2) We manually went through the 339 cryptocurrency
entries and confirmed those with repository links to GitHub
(as listed on CoinMarketCap). Of these, 236 cryptocurrencies
hosted code on GitHub; the remainder either did not develop
open source artifacts, or were hosted on unsupported code
hosting sites. We registered these projects in our data collection
tool. On GitHub, cryptocurrency-related software is either
developed in a single repository (associated with a single user

4https://help.github.com/articles/about-repository-languages

GitHub account) or across multiple repositories (associated
with a GitHub organization account). Our tool thus registers
either an organization account or a single repository link per
cryptocurrency. For organizations, our tool collects metrics
across all associated repositories. We recorded the metrics in
Table I for each repository every 24 hours. The data set cuts off
on February 4, 2019. We did not add additional cryptocurrencies
once data collection started (i.e., software metrics for new
cryptocurrencies launched mid-year 2018 are excluded in the
current data set).

Collection interval and method. We implemented a cron job
that records metrics for each repository by actively polling the
endpoints in Table I every 24 hours. This approach ensures that
we (a) collect metrics that are not available on the event stream
(e.g., watcher subscriptions) and (b) obtain live, fine-grained
commit and code changes at 24-hour intervals. Although
commit data can be retrieved retroactively, our data collection
is “online” and robust against destructive history rewrites (like
force pushes).

One challenge to live collection is that GitHub places a
rate limit of 5000 API requests per GitHub application (or
user token) per hour. Recording data for all 236 projects
would require 29 user tokens if we started all of the requests
simultaneously. However, since we chose to collect data at
a 24 hour granularity we did not need to start them all at
once. Instead, we split our retrieval jobs by cryptocurrency
(i.e., GitHub account) across a 14 hour period so that we could
reuse a token roughly every hour. In this setup, we needed
three user tokens. Thus, other users of our tool require only
three user tokens to capture at the same fidelity and number of
repositories represented in our current data set. We recorded
the cryptocurrency rankings listed by CoinMarketCap every 24
hours, available through CoinMarketCap’s API (a single URL).
This data includes market capitalization, price, and volume for
each cryptocurrency. We ran our cron job on a small Digital
Ocean droplet.5

Tool operation. We performed all data collection by implement-
ing our own commandline tool6 consisting of three commands.

The data persistence command saves the metrics in Table I
(at the current time) to disk. The command accepts one or
more cryptocurrency identifiers, and a GitHub authentication
token to issue additional requests when rate limiting takes
effect. Cryptocurrency identifiers (and associated GitHub
organizations) are manually entered in a configuration file
and easily extended.

The export command aggregates metrics over multiple
repositories and exports data in simple CSV file format. We
use a separate second command so that aggregation can be
configured before emitting the CSV data. For example, we
have found it useful to configure aggregation as including or
excluding forked repositories.

5A single vCPU (running on Intel E5-2630 2.30GHz) and 1GB RAM.
6available at https://github.com/rvantonder/CryptOSS; https://doi.org/10.

5281/zenodo.2595621

https://github.com/rvantonder/CryptOSS
https://doi.org/10.5281/zenodo.2595621
https://doi.org/10.5281/zenodo.2595621

Fig. 1: A web view of just the top 4 Ethereum repositories, sorted by stars by clicking on the respective column. Our tool
renders data in an interactive website for navigating across difference cryptocurrencies and sorting by various metrics.

The third command generates an HTML site from raw and
aggregated data (see Fig 1). This is a convenience utility where
users can interactively explore and debug collected data. The
website renders tabular data for all cryptocurrencies on disk.
The user can drill down and inspect individual metrics for all
repositories belonging to a single cryptocurrency. All metrics,
displayed by column, are individually sortable by clicking on
the column header.

We implement a cron job and website generation script that
wrap these three commands. The cron job polling interval can
be configured by the user (for example, the metrics above
can be collected every hour if desired, GitHub authentication
tokens allowing).

We note that the data persistence command is broadly useful
for actively polling the GitHub API at a chosen granularity
to obtain fine-grained time series data, and is not restricted
particularly to cryptocurrency repositories (the user can simply
list alternative GitHub accounts in the configuration file).
Similarly, we note potential for aggregating and exporting
these metrics across repositories and organizations broadly.

III. DATA SET DESCRIPTION

Our data set includes data collected for 236 projects,
comprising more than 7,000 repositories over the course of
380 days. Various factors, not unfamiliar to mining software
repositories,7 affected data collection (e.g., projects moved
on GitHub, network disruption, or our server temporarily
running out of space). We thus normalized raw data for analysis
convenience, and performed rudimentary recovery for lost data.
The raw data set, processed data set, and recovered data set
are made available at https://doi.org/10.5281/zenodo.2595588.
We elaborate on challenges, data normalization, recovery, and
content below.

Challenges and data recovery. We missed data for various
reasons. Some cryptocurrencies changed the associated GitHub
account (for example, Raiblocks rebranded to Nano), and we
did not update our configuration to reflect such changes. The
24-hour commits over 7 days may not add up to the expected
aggregate counts due to desynchronized queries or connec-
tions. We intermittently ran out of space on our server and
unfortunately periodically overwrote data during compression

7see “Data processing” at http://ghtorrent.org/faq.html.

(interspersed roughly once a month). In other cases, running
large queries (e.g., for Ethereum) would unpredictably run
out of memory. In total, we lost data for 44 days out of 380
days during active collection.8 This loss is greatly mitigated
by the fact that the data is generally recoverable. For example,
historical commit data can be recovered from GitHub (as long
as the repository has not been deleted). Other data, such as
stars, may be profitably queried from GHTorrent. Existing
sources present compelling ways to recover missing data.
In practice, this entails synchrony with our current data (to
avoid inconsistencies) or expensive operations (e.g., cloning
thousands of repositories) to perform small queries. Instead
of spending considerable effort on interfacing with external
sources, we performed data recovery with the existing data
as follows. Data such as stars, watchers, and subscribers tend
to increase monotonically. Using this assumption, we checked
whether these values stayed the same for days before and after
a missing day. If they were the same, we imputed the same
value for the missing day. For commits and lines of changes,
we used the 7 day aggregate values to deduce some missing
days. We recovered values for 19 of the 44 days (25 days have
historically available, but unrecovered values).

Data set content and normalization. The final CSV file is
362MB9 and contains the data from January 21, 2018 to
February 4, 2019 for 236 projects. The file contains just
over 3 million entries, one line per entry, with each entry
corresponding to a single repository on a particular day. Each
entry contains 24 comma-separated fields; the fields are listed
in Listing II. To make the data set convenient for analysis,
we normalized entries with null values across all days for all
unique cryptocurrency and repository name pairs. Each date
thus has 7,931 rows.

Aggregate metrics over multiple repositories per project
can be insightful. Unfortunately, there is no easy way to
attribute activity on forks to a project. In some cases, software
development on forks deserve to be attributed to a particular
cryptocurrency (e.g., the Litecoin fork of Bitcoin should be
attributed to the Litecoin project). In other cases, forked
dependencies (like nixpkgs) should generally not be attributed
to a project. Our tool can generate aggregate values (choosing

8Missed dates can be found at https://doi.org/10.5281/zenodo.2595588
9The raw compressed data is 5.1GB.

https://doi.org/10.5281/zenodo.2595588
http://ghtorrent.org/faq.html.
https://doi.org/10.5281/zenodo.2595588

date cryptocurrency name
symbol market cap rank
price usd market cap usd

repo name language
is forked

stars forks
watchers last updated

commits 24h commits 7d
changes 24h loc added changes 7d loc added
changes 24 loc removed changes 7d loc removed

contributors 7d contributors all time

changes 1y
commits 1y loc added changes 1y loc removed

TABLE II: The 24 fields in the CSV data set. The language and
last updated are strings; is forked is a boolean; all other fields are
integers. The value of contributors all time is capped at 100.

whether to include forks or not), but because of these challenges
we expose only whether a repository is forked in the CSV
dataset.

IV. RESEARCH APPLICATIONS

Although metrics such as lines of code and commit history
do not necessarily speak to software quality (indeed, evaluating
software quality is a longstanding research problem [5]–[8]),
quantitative metrics can be useful as covariates for software
quality predictors [9] and maintenance [10]. Moreover, devel-
opers use metrics such as star and commit counts as signals of
popularity and quality on GitHub [11], and research suggests
that popularity is positively associated with cryptocurrency
prices [12].

Hence, as future work with our data set, we propose studies
on the temporal relationship between open source development
activity, popularity, and cryptocurrency financial data (e.g., as
in [13]). This could involve regression modeling to find the
most important correlates of cryptocurrency price, or more
complex models such as recurrent neural networks to predict
future price. Our data set could further facilitate the realistic
testing of algorithmic trading strategies, similar to Garcia et
al. [14].

Previous studies have investigated the intervention effect
of adding continuous integration tools [15] and badges, a
signal of quality [16], to open source projects. These studies
use the interrupted time series design [17] to analyze the
change in level and slope of a studied measure after such
an intervention. Similarly, future studies could investigate the
change in cryptocurrency prices associated with the addition
of development tools or visible signals on repository pages.

Future studies could analyze the conditional variance of
the collected measures in addition to the conditional mean;
cryptocurrency prices may, for example, be more volatile in
periods of intense development activity. Further, our data set
could be paired with additional cryptocurrency data, such as the
trading volume or number of active users [12]. One challenge
is to leverage the small but potentially important differences

in highly correlated metrics such as stars, forks, and watchers
(a unique contribution of our data set).

Broadly, cryptocurrency prices provide one operationaliza-
tion of value for corresponding software projects, which can be
viewed in relation to different development practices [15],
[16] programming language preferences, and governance
structures [18]. We may ask: Do centralized teams tend to
develop more valued cryptocurrencies than decentralized teams?
To what extent does language preference or team size play a
role? Our data set can help answer such questions.

V. DISCUSSION AND CONCLUSION

Our data set marks a first concentrated effort to quantify
effort and interest behind the software development of cryp-
tocurrencies. We include software and financial metrics for
more than 7,000 repositories over a period of 380 days. We
used a 24-hour active polling method to access transient data
(e.g., subscribers); otherwise unavailable in existing data sets.
Our method suffered some gaps during collection, though much
of the missing data is historically recoverable. Going forward,
additional infrastructure can ensure the quality and scale of data
collection. An open challenge remains monitoring changes in
cryptocurrency organizations (such as rebranding or renaming)
and reflecting such changes in the data set. Unifying data
collection and metrics over different code hosts (e.g., GitLab,
BitBucket) presents a further challenge and opportunity for
improving our data set. Finally, some cryptocurrencies do not
have a single, definitive location for software development
(e.g., Bitcoin Cash), making it a challenge to monitor activity
and growth. Our hope is nevertheless that the initial data set in
this paper spurs greater interest for the continuing collection
and analysis of software artifacts behind the cryptocurrency
phenomenon.

ACKNOWLEDGMENTS

This work is partially supported under NSF grant number
CCF-750116. All statements are those of the authors, and do
not necessarily reflect the views of the funding agency.

REFERENCES

[1] N. Abbatemarco, L. M. D. Rossi, and G. Salviotti, “An econometric
model to estimate the value of a cryptocurrency network. the bitcoin case,”
in European Conference on Information Systems: Beyond Digitization -
Facets of Socio-Technical Change, ser. ECIS ’18, 2018, p. 164.

[2] J. Bonneau, A. Miller, J. Clark, A. Narayanan, J. A. Kroll, and E. W.
Felten, “Sok: Research perspectives and challenges for bitcoin and
cryptocurrencies,” in IEEE Symposium on Security and Privacy, 2015,
pp. 104–121.

[3] M. Apostolaki, A. Zohar, and L. Vanbever, “Hijacking bitcoin: Routing
attacks on cryptocurrencies,” in IEEE Symposium on Security and Privacy,
2017, pp. 375–392.

[4] G. Gousios, “The GHTorrent dataset and tool suite,” in Mining Software
Repositories, ser. MSR ’13, 2013, pp. 233–236.

[5] E. Kalliamvakou, D. E. Damian, K. Blincoe, L. Singer, and D. M.
Germán, “Open source-style collaborative development practices in
commercial projects using github,” in International Conference on
Software Engineering, ser. ICSE ’15, 2015, pp. 574–585.

[6] S. Wagner, K. Lochmann, L. Heinemann, M. Kläs, A. Trendowicz,
R. Plösch, A. Seidl, A. Goeb, and J. Streit, “The quamoco product
quality modelling and assessment approach,” in International Conference
on Software Engineering, ser. ICSE ’12, 2012, pp. 1133–1142.

[7] A. J. Albrecht and J. E. G. Jr., “Software function, source lines of code,
and development effort prediction: A software science validation,” IEEE
Trans. Software Eng., vol. 9, no. 6, pp. 639–648, 1983.

[8] S. Slaughter, D. E. Harter, and M. S. Krishnan, “Evaluating the cost of
software quality,” Commun. ACM, vol. 41, no. 8, pp. 67–73, 1998.

[9] J. Rosenberg, “Some misconceptions about lines of code,” in International
Software Metrics Symposium, ser. METRICS ’97, 1997, p. 137.

[10] D. M. Coleman, D. Ash, B. Lowther, and P. W. Oman, “Using metrics
to evaluate software system maintainability,” IEEE Computer, vol. 27,
no. 8, pp. 44–49, 1994.

[11] L. Dabbish, C. Stuart, J. Tsay, and J. Herbsleb, “Social coding in
GitHub: transparency and collaboration in an open software repository,”
in Proceedings of the ACM 2012 Conference on Computer Supported
Cooperative Work (CSCW). ACM, 2012, pp. 1277–1286.

[12] L. Kristoufek, “What are the main drivers of the bitcoin price? evidence
from wavelet coherence analysis,” PloS one, vol. 10, no. 4, p. e0123923,
2015.

[13] A. Trockman, R. van Tonder, and B. Vasilescu, “Striking Gold in Software
Repositories? An Econometric Study of Cryptocurrencies on GitHub,”
in International Conference on Mining Software Repositories, ser. MSR

’19, 2019.
[14] D. Garcia, C. J. Tessone, P. Mavrodiev, and N. Perony, “The digital

traces of bubbles: feedback cycles between socio-economic signals in
the bitcoin economy,” Journal of the Royal Society Interface, vol. 11,
no. 99, p. 20140623, 2014.

[15] Y. Zhao, Y. Zhou, A. Serebrenik, V. Filkov, and B. Vasilescu, “The impact
of continuous integration on other software development practices: A
large-scale empirical study,” in International Conference on Automated
Software Engineering, ser. ASE. IEEE, 2017, pp. 60–71.

[16] A. Trockman, S. Zhou, C. Kästner, and B. Vasilescu, “Adding sparkle
to social coding: an empirical study of repository badges in the npm
ecosystem,” in International Conference on Software Engineering (ICSE).
ACM, 2018, pp. 511–522.

[17] W. R. Shadish, T. D. Cook, D. T. Campbell et al., Experimental and
quasi-experimental designs for generalized causal inference/William R.
Shedish, Thomas D. Cook, Donald T. Campbell. Boston: Houghton
Mifflin,, 2002.

[18] M. L. Markus, “The governance of free/open source software projects:
monolithic, multidimensional, or configurational?” Journal of Manage-
ment & Governance, vol. 11, no. 2, pp. 151–163, 2007.

	Introduction
	Data Collection
	Data Set Description
	Research Applications
	Discussion and Conclusion
	References

