
COBOLd: Gobblin’ Up COBOL Bugs for Fun and Profit

squaresLab
∗

Institute for So�ware Research

School of Computer Science

Carnegie Mellon University

Pi�sburgh, PA 15213

Mr. squaresLab SpouseMan
†

�e Private Sector

Pi�sburgh, PA 15213

ABSTRACT
�e cost and ubiquity of so�ware bugs has motivated research in

automated program repair (APR), a �eld dedicated to the automatic

triage and patching of so�ware defects. APR has typically focused

on popular languages such as C and Java, but COBOL developers

have su�ered six decades of neglect and deserve a repair tool too.

We present COBOLd, the �rst tool for automatically repairing buggy

COBOL programs. We demonstrate COBOLd’s e�ectiveness on

a COBOL reimplementation of the infamous Zune leap-year bug.

We also argue that “we got this” and other researchers should stay

away so that we can �x all the COBOL bugs ourselves and thus be

�lthy, stinking rich.

CCS CONCEPTS
•So�ware and its engineering →So�ware evolution; Main-
taining so�ware; Search-based so�ware engineering; •COBOL
repair →$$$$$$$$$$$$$$$$$$$$$$$$$$$$;

KEYWORDS
COBOL, SBSE, So�ware Evolution, Genetic Programming, $$$$

ACM Reference format:
squaresLab and Mr. squaresLab SpouseMan. 2018. COBOLd: Gobblin’ Up

COBOL Bugs for Fun and Pro�t. In Proceedings of SIGBOVIK, Pi�sburgh, PA
USA, March 2018 (SIGBOVIK’18), 5 pages.
DOI: 10.475/123 4

1 INTRODUCTION
1.1 Automatic Program Repair (APR)
Automatic program repair (APR) is all about �xing bugs automati-

cally because so�ware maintenance is expensive. APR techniques

take as input (1) a program with a defect and (2) a mechanism to

validate correct and incorrect behavior in that program. �e val-

idation mechanism is typically a test suite: a bug to be repaired

corresponds to one or more tests that is failing; one or more pass-

ing tests guard against the removal of desireable functionality. �e

goal is to produce a patch that modi�es the original program such

∗
Chris Timperley, Deby Katz, Zack Coker, Rijnard van Tonder, Mauricio Soto, Afsoon

Afzal, Cody Kinneer, Jeremy Lacomis, and Claire Le Goues

†
Adam Brady

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for pro�t or commercial advantage and that copies bear this notice and the full citation

on the �rst page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

SIGBOVIK’18, Pi�sburgh, PA USA
© 2018 Copyright held by the owner/author(s). 123-4567-24-567/08/06. . . $15.00

DOI: 10.475/123 4

that failing test cases pass without breaking any of the originally

passing test cases.

In this work, we automatically �x bugs in COBOL programs

using COBOLd, which is just GenProg [10, 11, 17, 18] directly ap-

plied to COBOL programs. GenProg uses genetic programming

to traverse a space of possible patches to a given buggy program.

GenProg uses the test results to de�ne an objective function that

informs an evolutionary search [4, 8] over the space of candidate

patches. We reuse GenProg because it is well-established and also

we know its source code very, very well, having wri�en a large pro-

portion of it. It turns out that, given the appropriate con�guration

options, the code we already have can totally �x bugs in COBOL

programs. Who knew?

2 BACKGROUND
Don’t know COBOL? Don’t worry. �is section has all you need.

2.1 COBOL: Is it reasonable?
2.1.1 Yes. It is incredibly di�cult to create a program that con-

tains bugs in COBOL. �is is because the design of the language

makes it incredibly di�cult to write any program in COBOL. �e

lack of advanced features such as passing parameters to procedures
means that programmers are forced to think very carefully before

authoring COBOL programs. Bugs can only exist if programs exist.

2.1.2 Counterpoint: Absolutely Not. �e �rst speci�cation of

the language (COBOL-60) contained many logical errors and was

impossible to interpret unambiguously [2]. �is is unsurprising: no

academic computer scientists were on the design commi�ee. �e

commi�ee invented a new metalanguage to de�ne its syntax be-

cause no commi�ee members had heard of Backus-Naur form [14].

Dijkstra once declared: “�e use of COBOL cripples the mind; its

teaching should, therefore, be regarded as a criminal o�ence.” [3]

Also, the “Hello World” program for COBOL is considered non-

compliant.
1

2.2 (Inexplicably Recent) Prior Work on
COBOL

Unfortunately for Dijkstra, COBOL is still lurking in academic con-

ferences and college curriculums (�ese citations are all real‼! I

know. We were also surprised!). Research papers on COBOL in

the 21
st
century cover aspect oriented programming [9, 15] and a

(2017‼!) study of code clones [6]. Professors disagreeing with Dijk-

stra, or openly admi�ing to torturing their students, have published

1
�e DISPLAY statement (i.e., print) is considered a dangerous pa�ern according to a

COBOL static analyzer: h�ps://rules.sonarsource.com/cobol/RSPEC-1279

SIGBOVIK’18, March 2018, Pi�sburgh, PA USA squaresLab and Mr. squaresLab SpouseMan

1 IDENTIFICATION DIVISION.

2 PROGRAM-ID. ZUNEBUG.

3

4 DATA DIVISION.

5 WORKING-STORAGE SECTION.

6 01 WS-YEAR PIC 9(9) VALUE 1980.

7 01 WS-DAYS PIC 9(9).

8 01 WS-Q PIC 9(9).

9 01 WS-R1 PIC 9(9).

10 01 WS-R2 PIC 9(9).

11 01 WS-R3 PIC 9(9).

12

13 PROCEDURE DIVISION.

14 MAIN-PARAGRAPH.

15 DISPLAY 1 UPON ARGUMENT-NUMBER.

16 ACCEPT WS-DAYS FROM ARGUMENT-VALUE.

17 PERFORM WITH TEST BEFORE UNTIL WS-DAYS <= 365

18 * LEAP YEAR COMPUTATION

19 DIVIDE WS-YEAR BY 4 GIVING WS-Q REMAINDER WS-R1

20 DIVIDE WS-YEAR BY 100 GIVING WS-Q REMAINDER WS-R2

21 DIVIDE WS-YEAR BY 400 GIVING WS-Q REMAINDER WS-R3

22 IF (WS-R1 = 0 AND WS-R2 NOT = 0) OR WS-R3 = 0 THEN

23 IF WS-DAYS IS GREATER THAN 366 THEN

24 SUBTRACT 366 FROM WS-DAYS

25 ADD 1 TO WS-YEAR

26 END-IF

27 ELSE

28 SUBTRACT 365 FROM WS-DAYS

29 ADD 1 TO WS-YEAR

30 END-IF

31 END-PERFORM.

32 DISPLAY WS-YEAR.

33 STOP RUN.

(a) Buggy code: An in�nite loop happens when WS-YEAR
is a leap year, and WS-DAYS is less than 366.

1 IDENTIFICATION DIVISION.

2 PROGRAM-ID. ZUNEBUG.

3

4 DATA DIVISION.

5 WORKING-STORAGE SECTION.

6 01 WS-YEAR PIC 9(9) VALUE 1980.

7 01 WS-DAYS PIC 9(9).

8 01 WS-Q PIC 9(9).

9 01 WS-R1 PIC 9(9).

10 01 WS-R2 PIC 9(9).

11 01 WS-R3 PIC 9(9).

12

13 PROCEDURE DIVISION.

14 MAIN-PARAGRAPH.

15 DISPLAY 1 UPON ARGUMENT-NUMBER.

16 ACCEPT WS-DAYS FROM ARGUMENT-VALUE.

17 PERFORM WITH TEST BEFORE UNTIL WS-DAYS <= 365

18 * LEAP YEAR COMPUTATION

19 DIVIDE WS-YEAR BY 4 GIVING WS-Q REMAINDER WS-R1

20 DIVIDE WS-YEAR BY 100 GIVING WS-Q REMAINDER WS-R2

21 DIVIDE WS-YEAR BY 400 GIVING WS-Q REMAINDER WS-R3

22 IF (WS-R1 = 0 AND WS-R2 NOT = 0) OR WS-R3 = 0 THEN

23 SUBTRACT 366 FROM WS-DAYS

24 IF WS-DAYS IS GREATER THAN 366 THEN

25 ADD 1 TO WS-YEAR

26 END-IF

27 ELSE

28 SUBTRACT 365 FROM WS-DAYS

29 ADD 1 TO WS-YEAR

30 END-IF

31 END-PERFORM.

32 DISPLAY WS-YEAR.

33 STOP RUN.

(b) Zune bug, repaired by COBOLd (yes, seriously). Lines 23 and 24
are swapped in the original source

Figure 1: COBOL implementation of the infamous Zune bug and repaired program generated by COBOLd. First six columns
omitted to �t on one page.

the colorfully titled papers “Teaching a language many CS students

didn’t want to learn: COBOL” [7] and “Bringing COBOL back to

the college IT curriculum” [12]. Some of our favorite excepts from

these papers’ abstracts include “As shocking as this may sound to
some, there are many reasons beyond great need to bring COBOL back
into the CIS curriculum” [12] and “Over 80 percent of error diagnosis
was found to be inaccurate. Such feedback is not optimal for users,
particularly for the learning user of Cobol.” [13].

As far as static analysis tools, Sonar�be
2
provides static analy-

sis tools for COBOL. However, Sonar�be can’t automatically �x

COBOL programs. But we can. So watch this and don’t blink.

3 APR FOR COBOL
3.1 Generate-and-validate.
One of primary classes of approaches for APR is known as heuristic
or generate-and-validate repair (G&V), which uses search-based

so�ware engineering techniques [5, 16] to generate many candidate

patches for a bug, and then validate themusing indicativeworkloads

or test suites.

Algorithm 1 illustrates our novel G&V approach for �xing COBOL

programs. �e COBOLd function takes as input a textual COBOL

program p. State of the art G&V APR techniques typically operate

on the abstract syntax tree (AST) of a program, rather than the

2
h�ps://www.sonarqube.org/

Algorithm 1 A simpli�ed G&V algorithm for automated COBOL

repair.

1: function COBOLd(p)
2: cands ← GenProg.getInitialPopulation(p)
3: while !oracle(cands) do
4: cands ← GenProg.getNextPopulation(cands)
5: end while
6: ???????????????????????????????

7: PROFIT!

8: end function

program text itself. �is helps limit the generation stage to syntac-

tically valid programs, and allows more advanced reasoning about

program structure. �ough this works for reasonable programming

languages, COBOL is not speci�ed with a real grammar (cf. Sec-

tion 2.1.2), and the creation of a parser would require for-real work.

So, the COBOLd function invokes GenProg [11] to modify the pro-

gram text of p directly. �is is particularly fortunate because we

would hate to implement a parser for a language with 550 reserved
words, are you #kidding me?3

�e brunt of the work is done by GenProg, which produces

candidate programs cands in the initial state (Line 1) and performs

3
h�p://www.math-cs.gordon.edu/courses/cs323/COBOL/COBOL-

reservedWords.html

COBOLd: Gobblin’ Up COBOL Bugs for Fun and Profit SIGBOVIK’18, March 2018, Pi�sburgh, PA USA

genetic mutation to generate additional candidates (Line 4) until the

oracle condition is satis�ed (Line 3). �e validation function oracle

runs the candidate COBOL program on test inputs. If the program

produces the expected output, oracle returns 1 and we end up

with a 100% absolutely correct
TM

COBOL program. Otherwise, we

keep looping until we �nd a candidate satisfying oracle.

3.2 Mutation operators.
COBOLd currently modi�es COBOL code by applying one of three

di�erent mutation operators: delete, which deletes a line of code,

add, which selects a random line of code and inserts a copy of

it at a random program point, and swap, which exchanges two

lines of code. In our exploratory study, these operators were su�-

cient to generate patches. Future versions of COBOLd will include

more COBOL-speci�c mutation operators such as delete-a-full-stop,
which randomly deletes a “.”, and adaptations, such as only mutat-

ing code inside of a procedure.

4 SERIOUSLY: HERE’S AN EXAMPLE
Figure 1 shows a COBOL implementation of the infamous Zune

bug [1]. �e Microso� Zune was a popular portable music player

that stored the current time as the number of days and seconds

since 1 January, 1980. �e (buggy) function in Figure 1a was used

to compute the current year. An in�nite loop occurs when WS-YEAR
corresponds to a leap year, and WS-DAYS is less than 366. In this

case, the SUBTRACT statement on line 24 is never executed, so the

value of WS-DAYS is never changed. COBOLd is able to successfully
repair this bug, producing the code shown in Figure 1b. To produce

this patch, COBOLd swaps the IF statement on line 23 and the

SUBTRACT statement on line 24.

5 WE ARE GOING TO BE VERY, VERY RICH
5.1 No, Really
According to the Cobol Cowboys

4
, COBOL is 65% of active code

used today, runs 85% of all business transactions. IBM cites that

200 BILLION lines of COBOL code is still in use today.
5

All of Google’s code comes in at about 1 percent of this number,

at a mere 2 billion lines of code.
6
�is is music to our ears. Rate

of adoption for our COBOL repair tool will strictly increase with

existing and proliferating COBOL code. Figure 2 conservatively

projects our income.

5.2 Treat. Yo. Self
We prepared a shortlist of things to treat ourselves with.

• Clothes

• fragrances

• massages

• mimosas

• �ne leather goods

• supercars

4
h�p://cobolcowboys.com/

5
Not a joke: h�ps://www-03.ibm.com/press/us/en/pressrelease/41095.wss

6
Not a joke: h�ps://informationisbeautiful.net/visualizations/million-lines-of-code/

Figure 2: COBOL Repair is going to make us rich.
if i do 5aγ so my sel f i say so thats what im

talking about right there right there (chorus:
rIght th

ere
) mMMMMMM

It’s a modest start, we’re new to this. We realize our enormous

purchasing power is likely to raise di�cult questions. Like, we

want private islands too,
7
but is Australia an island? Is it for sale?

We do plan to use very smol portion of our pro�ts
8
for the greater

good. Our #1 priority is to eradicate video and audio autoplay on

all websites. We are willing to pay good money to remove the

autoplay a�ribute from the HTML spec, please get in touch if you

know someone. We also plan to resurrect geocities sites. We really

miss 88x31 bu�ons. Click the one below to get the COBOLd demo

(or Netscape Now! we’re not really sure).

ACKNOWLEDGMENTS
We would like to thank Nalia Soto Gutierrez (Figure 3); Ryan, Kyle

(Figure 6), Kevin (Figure 5), and Layla Lacomis (Figure 7); Aries

(Figure 12), Cheese (Figure 10), Snickers (Figure 4), and Ampersand

LeBrady (Figure 11); Penelope Surden (Figure 8); and Millie Tim-

perley (Figure 9) for all of their love and support, without them this

research would not be possible.

We’d also like tomore seriously thankGrace Hopper for her work

in compilers, for guiding the development of machine-independent

programming languages like COBOL, and for being an awesome

woman in science. And the ENIAC programmers, who do not get

enough recognition.

REFERENCES
[1] BBC News. 2008. Microso� Zune a�ected by ‘bug’. In h�p://news.bbc.co.uk/2/hi/

technology/7806683.stm.

[2] Bob Bemer. 1971. A View of the History of COBOL. Honeywell Computer Journal
(1971).

[3] Edsger W. Dijkstra. 1975. How do we tell truths that might hurt? (June 1975).

published as EWD:EWD498pub.

7
h�ps://www.privateislandsonline.com

8
which is still going to be like, hundreds of millions

https://github.com/squareslab/COBOLd
http://news.bbc.co.uk/2/hi/technology/7806683.stm
http://news.bbc.co.uk/2/hi/technology/7806683.stm

SIGBOVIK’18, March 2018, Pi�sburgh, PA USA squaresLab and Mr. squaresLab SpouseMan

[4] Stephanie Forrest. 1993. Genetic Algorithms: Principles of Natural Selection

Applied to Computation. Science 261 (Aug. 1993), 872–878.
[5] Mark Harman. 2007. �e Current State and Future of Search Based So�ware

Engineering. In ACM/IEEE International Conference on So�ware Engineering
(ICSE). 342–357. h�ps://doi.org/10.1109/FOSE.2007.29

[6] Tomomi Hatano and Akihiko Matsuo. 2017. Removing Code Clones from Indus-

trial Systems Using Compiler Directives. In International Conference on Program
Comprehension (ICPC ’17). 336–345.

[7] Stephen M. Jodis. 1995. Experiences and Successes in Teaching a Language Many

CS Students Didn’t Want to Learn: COBOL. In Southeast Regional Conference
(ACM-SE 33). 273–274.

[8] John R. Koza. 1992. Genetic Programming: On the Programming of Computers by
Means of Natural Selection. MIT Press.

[9] Ralf Lämmel and Kris De Schu�er. 2005. What Does Aspect-oriented Program-

ming Mean to Cobol?. In International Conference on Aspect-oriented So�ware
Development (AOSD ’05). 99–110.

[10] Claire Le Goues, Michael Dewey-Vogt, Stephanie Forrest, and Westley Weimer.

2012. A systematic study of automated program repair: Fixing 55 out of 105

bugs for $8 each. In AMC/IEEE International Conference on So�ware Engineering
(ICSE). Zurich, Switzerland, 3–13.

[11] Claire Le Goues, �anhVu Nguyen, Stephanie Forrest, and Westley Weimer. 2012.

GenProg: A Generic Method for Automatic So�ware Repair. IEEE Transactions
on So�ware Engineering (TSE) 38 (2012), 54–72. h�ps://doi.org/10.1109/TSE.

2011.104

[12] Ed Lindoo. 2014. Bringing COBOL Back into the College IT Curriculum. Journal
of Computing Sciences in Colleges 30, 2 (Dec. 2014), 60–66.

[13] Charles R. Litecky and Gordon B. Davis. 1976. A Study of Errors, Error-proneness,

and Error Diagnosis in Cobol. Commun. ACM 19, 1 (Jan. 1976), 33–38.

[14] Schneiderman. 1985. �e Relationship Between COBOL and Computer Science.

Annals of the History of Computing 7, 4 (1985), 348–352.

[15] Hideaki Shinomi and Yasuhisa Ichimori. 2010. ProgramAnalysis Environment for

Writing COBOL Aspects. In International Conference on Aspect-Oriented So�ware
Development (AOSD ’10). 222–230.

[16] Shin Hwei Tan and Abhik Roychoudhury. 2015. reli�x: Automated Repair of

So�ware Regressions. In International Conference on So�ware Engineering (ICSE).
Florence, Italy.

[17] Westley Weimer, Stephanie Forrest, Claire Le Goues, and�anhVu Nguyen. 2010.

Automatic program repair with evolutionary computation. Communications of
the ACM Research Highlight 53, 5 (May 2010), 109–116.

[18] Westley Weimer, �anhVu Nguyen, Claire Le Goues, and Stephanie Forrest.

2009. Automatically �nding patches using genetic programming. In ACM/IEEE
International Conference on So�ware Engineering (ICSE). Vancouver, BC, Canada,
364–374. h�ps://doi.org/10.1109/ICSE.2009.5070536

Figure 3: Naila: Was a cat in her previous life. Also, loves
pizza more than life itself

Figure 4: Snickers: THE PRETTIEST KITTY

Figure 5: Kevin: Kind of an idiot

Figure 6: Kyle and Ryan: So� pile

Figure 7: Layla: Actually the prettiest kitty

https://doi.org/10.1109/FOSE.2007.29
https://doi.org/10.1109/TSE.2011.104
https://doi.org/10.1109/TSE.2011.104
https://doi.org/10.1109/ICSE.2009.5070536

COBOLd: Gobblin’ Up COBOL Bugs for Fun and Profit SIGBOVIK’18, March 2018, Pi�sburgh, PA USA

Figure 8: Madam Penelope,�een of the Apartment

Figure 9: Millie: Stealer of food and hearts

Figure 10: Cheese: SPIRIT OF A CHAMPION

Figure 11: Ampersand: Stone Cold Killer

Figure 12: Aries: Is a bird

	Abstract
	1 Introduction
	1.1 Automatic Program Repair (APR)

	2 Background
	2.1 COBOL: Is it reasonable?
	2.2 (Inexplicably Recent) Prior Work on COBOL

	3 APR for COBOL
	3.1 Generate-and-validate.
	3.2 Mutation operators.

	4 Seriously: Here's an Example
	5 We Are Going to be Very, Very Rich
	5.1 No, Really
	5.2 Treat. Yo. Self

	Acknowledgments
	References

